Таблица истинности для функции F≡¬A∧¬B:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

F≡((¬A)∧(¬B)):
FAB¬A¬B(¬A)∧(¬B)F≡((¬A)∧(¬B))
0001110
0011001
0100101
0110001
1001111
1011000
1100100
1110000

Общая таблица истинности:

FAB¬A¬B(¬A)∧(¬B)F≡¬A∧¬B
0001110
0011001
0100101
0110001
1001111
1011000
1100100
1110000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FABF
0000
0011
0101
0111
1001
1010
1100
1110
Fсднф = ¬F∧¬A∧B ∨ ¬F∧A∧¬B ∨ ¬F∧A∧B ∨ F∧¬A∧¬B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FABF
0000
0011
0101
0111
1001
1010
1100
1110
Fскнф = (F∨A∨B) ∧ (¬F∨A∨¬B) ∧ (¬F∨¬A∨B) ∧ (¬F∨¬A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FABFж
0000
0011
0101
0111
1001
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧F ⊕ C010∧A ⊕ C001∧B ⊕ C110∧F∧A ⊕ C101∧F∧B ⊕ C011∧A∧B ⊕ C111∧F∧A∧B

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = F ⊕ A ⊕ B ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы