Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬(X1∨(¬X2)∨X3)∨X2∧(¬X3):
Промежуточные таблицы истинности:¬X2: X1∨(¬X2): X1 | X2 | ¬X2 | X1∨(¬X2) | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
(X1∨(¬X2))∨X3: X1 | X2 | X3 | ¬X2 | X1∨(¬X2) | (X1∨(¬X2))∨X3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
¬X3: ¬((X1∨(¬X2))∨X3): X1 | X2 | X3 | ¬X2 | X1∨(¬X2) | (X1∨(¬X2))∨X3 | ¬((X1∨(¬X2))∨X3) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
X2∧(¬X3): X2 | X3 | ¬X3 | X2∧(¬X3) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
(¬((X1∨(¬X2))∨X3))∨(X2∧(¬X3)): X1 | X2 | X3 | ¬X2 | X1∨(¬X2) | (X1∨(¬X2))∨X3 | ¬((X1∨(¬X2))∨X3) | ¬X3 | X2∧(¬X3) | (¬((X1∨(¬X2))∨X3))∨(X2∧(¬X3)) | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Общая таблица истинности:X1 | X2 | X3 | ¬X2 | X1∨(¬X2) | (X1∨(¬X2))∨X3 | ¬X3 | ¬((X1∨(¬X2))∨X3) | X2∧(¬X3) | ¬(X1∨(¬X2)∨X3)∨X2∧(¬X3) | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X1 | X2 | X3 | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬X1∧X2∧¬X3 ∨ X1∧X2∧¬X3
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|