Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬(¬(A∨B)∧(¬A→B)):
Промежуточные таблицы истинности:A∨B: ¬A: (¬A)→B: A | B | ¬A | (¬A)→B | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
¬(A∨B): A | B | A∨B | ¬(A∨B) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
(¬(A∨B))∧((¬A)→B): A | B | A∨B | ¬(A∨B) | ¬A | (¬A)→B | (¬(A∨B))∧((¬A)→B) | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
¬((¬(A∨B))∧((¬A)→B)): A | B | A∨B | ¬(A∨B) | ¬A | (¬A)→B | (¬(A∨B))∧((¬A)→B) | ¬((¬(A∨B))∧((¬A)→B)) | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
Общая таблица истинности:A | B | A∨B | ¬A | (¬A)→B | ¬(A∨B) | (¬(A∨B))∧((¬A)→B) | ¬(¬(A∨B)∧(¬A→B)) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: F сднф = ¬A∧¬B ∨ ¬A∧B ∨ A∧¬B ∨ A∧B Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: В таблице истинности нет набора значений переменных при которых функция ложна!
Построение полинома Жегалкина:
По таблице истинности функции Построим полином Жегалкина: F ж = C 00 ⊕ C 10∧A ⊕ C 01∧B ⊕ C 11∧A∧B Так как F ж(00) = 1, то С 00 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(10) = С 00 ⊕ С 10 = 1 => С 10 = 1 ⊕ 1 = 0 F ж(01) = С 00 ⊕ С 01 = 1 => С 01 = 1 ⊕ 1 = 0 F ж(11) = С 00 ⊕ С 10 ⊕ С 01 ⊕ С 11 = 1 => С 11 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 Таким образом, полином Жегалкина будет равен: F ж = 1
|
![](/img/grey.gif) |
![](/img/grey.gif) |
![](/img/spacer.gif) |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|