Таблица истинности для функции F≡¬(A∧¬B)∨(¬B∧¬C):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

¬C:
C¬C
01
10

(¬B)∧(¬C):
BC¬B¬C(¬B)∧(¬C)
00111
01100
10010
11000

¬(A∧(¬B)):
AB¬BA∧(¬B)¬(A∧(¬B))
00101
01001
10110
11001

(¬(A∧(¬B)))∨((¬B)∧(¬C)):
ABC¬BA∧(¬B)¬(A∧(¬B))¬B¬C(¬B)∧(¬C)(¬(A∧(¬B)))∨((¬B)∧(¬C))
0001011111
0011011001
0100010101
0110010001
1001101111
1011101000
1100010101
1110010001

F≡((¬(A∧(¬B)))∨((¬B)∧(¬C))):
FABC¬BA∧(¬B)¬(A∧(¬B))¬B¬C(¬B)∧(¬C)(¬(A∧(¬B)))∨((¬B)∧(¬C))F≡((¬(A∧(¬B)))∨((¬B)∧(¬C)))
000010111110
000110110010
001000101010
001100100010
010011011110
010111010001
011000101010
011100100010
100010111111
100110110011
101000101011
101100100011
110011011111
110111010000
111000101011
111100100011

Общая таблица истинности:

FABC¬BA∧(¬B)¬C(¬B)∧(¬C)¬(A∧(¬B))(¬(A∧(¬B)))∨((¬B)∧(¬C))F≡¬(A∧¬B)∨(¬B∧¬C)
00001011110
00011000110
00100010110
00110000110
01001111010
01011100001
01100010110
01110000110
10001011111
10011000111
10100010111
10110000111
11001111011
11011100000
11100010111
11110000111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FABCF
00000
00010
00100
00110
01000
01011
01100
01110
10001
10011
10101
10111
11001
11010
11101
11111
Fсднф = ¬F∧A∧¬B∧C ∨ F∧¬A∧¬B∧¬C ∨ F∧¬A∧¬B∧C ∨ F∧¬A∧B∧¬C ∨ F∧¬A∧B∧C ∨ F∧A∧¬B∧¬C ∨ F∧A∧B∧¬C ∨ F∧A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FABCF
00000
00010
00100
00110
01000
01011
01100
01110
10001
10011
10101
10111
11001
11010
11101
11111
Fскнф = (F∨A∨B∨C) ∧ (F∨A∨B∨¬C) ∧ (F∨A∨¬B∨C) ∧ (F∨A∨¬B∨¬C) ∧ (F∨¬A∨B∨C) ∧ (F∨¬A∨¬B∨C) ∧ (F∨¬A∨¬B∨¬C) ∧ (¬F∨¬A∨B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FABCFж
00000
00010
00100
00110
01000
01011
01100
01110
10001
10011
10101
10111
11001
11010
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧F ⊕ C0100∧A ⊕ C0010∧B ⊕ C0001∧C ⊕ C1100∧F∧A ⊕ C1010∧F∧B ⊕ C1001∧F∧C ⊕ C0110∧A∧B ⊕ C0101∧A∧C ⊕ C0011∧B∧C ⊕ C1110∧F∧A∧B ⊕ C1101∧F∧A∧C ⊕ C1011∧F∧B∧C ⊕ C0111∧A∧B∧C ⊕ C1111∧F∧A∧B∧C

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 0 ⊕ 1 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 0 ⊕ 0 = 0
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = F ⊕ A∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы