Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (C⊕A)∧(A∧C):
Промежуточные таблицы истинности:C⊕A: A∧C: (C⊕A)∧(A∧C): C | A | C⊕A | A∧C | (C⊕A)∧(A∧C) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
Общая таблица истинности:C | A | C⊕A | A∧C | (C⊕A)∧(A∧C) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: В таблице истинности нет набора значений переменных при которых функция истинна!
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: F скнф = (C∨A) ∧ (C∨¬A) ∧ (¬C∨A) ∧ (¬C∨¬A) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции Построим полином Жегалкина: F ж = C 00 ⊕ C 10∧C ⊕ C 01∧A ⊕ C 11∧C∧A Так как F ж(00) = 0, то С 00 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(10) = С 00 ⊕ С 10 = 0 => С 10 = 0 ⊕ 0 = 0 F ж(01) = С 00 ⊕ С 01 = 0 => С 01 = 0 ⊕ 0 = 0 F ж(11) = С 00 ⊕ С 10 ⊕ С 01 ⊕ С 11 = 0 => С 11 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 0
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|