Таблица истинности для функции ¬X1∧¬X2∨¬X2∧¬X3∨¬X1∧¬X3∧¬X4∨¬X1∧X3∧X4:


Общая таблица истинности:

X1X2X3X4¬X1¬X2¬X3¬X4(¬X1)∧(¬X2)(¬X2)∧(¬X3)(¬X1)∧(¬X3)((¬X1)∧(¬X3))∧(¬X4)(¬X1)∧X3((¬X1)∧X3)∧X4((¬X1)∧(¬X2))∨((¬X2)∧(¬X3))(((¬X1)∧(¬X2))∨((¬X2)∧(¬X3)))∨(((¬X1)∧(¬X3))∧(¬X4))¬X1∧¬X2∨¬X2∧¬X3∨¬X1∧¬X3∧¬X4∨¬X1∧X3∧X4
00001111111100111
00011110111000111
00101101100010111
00111100100011111
01001011001100011
01011010001000000
01101001000010000
01111000000011001
10000111010000111
10010110010000111
10100101000000000
10110100000000000
11000011000000000
11010010000000000
11100001000000000
11110000000000000

Логическая схема:

Построение полинома Жегалкина:

По таблице истинности функции
X1X2X3X4Fж
00001
00011
00101
00111
01001
01010
01100
01111
10001
10011
10100
10110
11000
11010
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧X1 ⊕ C0100∧X2 ⊕ C0010∧X3 ⊕ C0001∧X4 ⊕ C1100∧X1∧X2 ⊕ C1010∧X1∧X3 ⊕ C1001∧X1∧X4 ⊕ C0110∧X2∧X3 ⊕ C0101∧X2∧X4 ⊕ C0011∧X3∧X4 ⊕ C1110∧X1∧X2∧X3 ⊕ C1101∧X1∧X2∧X4 ⊕ C1011∧X1∧X3∧X4 ⊕ C0111∧X2∧X3∧X4 ⊕ C1111∧X1∧X2∧X3∧X4

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 1 ⊕ 1 = 0
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X1∧X2 ⊕ X1∧X3 ⊕ X2∧X3 ⊕ X2∧X4 ⊕ X1∧X2∧X4
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы