Промежуточные таблицы истинности:¬X:
¬A:
(¬X)∧Y:
X | Y | ¬X | (¬X)∧Y |
0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 |
((¬X)∧Y)∧Z:
X | Y | Z | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
(((¬X)∧Y)∧Z)∧(¬A):
X | Y | Z | A | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬A | (((¬X)∧Y)∧Z)∧(¬A) |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
¬Z:
((¬X)∧Y)∧(¬Z):
X | Y | Z | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) |
0 | 0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 |
(((¬X)∧Y)∧(¬Z))∧(¬A):
X | Y | Z | A | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | ¬A | (((¬X)∧Y)∧(¬Z))∧(¬A) |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
X∧Y:
(X∧Y)∧Z:
X | Y | Z | X∧Y | (X∧Y)∧Z |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
((X∧Y)∧Z)∧(¬A):
X | Y | Z | A | X∧Y | (X∧Y)∧Z | ¬A | ((X∧Y)∧Z)∧(¬A) |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
((((¬X)∧Y)∧Z)∧(¬A))∨((((¬X)∧Y)∧(¬Z))∧(¬A)):
X | Y | Z | A | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬A | (((¬X)∧Y)∧Z)∧(¬A) | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | ¬A | (((¬X)∧Y)∧(¬Z))∧(¬A) | ((((¬X)∧Y)∧Z)∧(¬A))∨((((¬X)∧Y)∧(¬Z))∧(¬A)) |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
нажмите на таблицу для просмотра*(((((¬X)∧Y)∧Z)∧(¬A))∨((((¬X)∧Y)∧(¬Z))∧(¬A)))∨(((X∧Y)∧Z)∧(¬A)):
X | Y | Z | A | ¬X | (¬X)∧Y | ((¬X)∧Y)∧Z | ¬A | (((¬X)∧Y)∧Z)∧(¬A) | ¬X | (¬X)∧Y | ¬Z | ((¬X)∧Y)∧(¬Z) | ¬A | (((¬X)∧Y)∧(¬Z))∧(¬A) | ((((¬X)∧Y)∧Z)∧(¬A))∨((((¬X)∧Y)∧(¬Z))∧(¬A)) | X∧Y | (X∧Y)∧Z | ¬A | ((X∧Y)∧Z)∧(¬A) | (((((¬X)∧Y)∧Z)∧(¬A))∨((((¬X)∧Y)∧(¬Z))∧(¬A)))∨(((X∧Y)∧Z)∧(¬A)) |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
нажмите на таблицу для просмотра*Общая таблица истинности:
X | Y | Z | A | ¬X | ¬A | (¬X)∧Y | ((¬X)∧Y)∧Z | (((¬X)∧Y)∧Z)∧(¬A) | ¬Z | ((¬X)∧Y)∧(¬Z) | (((¬X)∧Y)∧(¬Z))∧(¬A) | X∧Y | (X∧Y)∧Z | ((X∧Y)∧Z)∧(¬A) | ((((¬X)∧Y)∧Z)∧(¬A))∨((((¬X)∧Y)∧(¬Z))∧(¬A)) | (¬X∧Y∧Z∧¬A)∨(¬X∧Y∧¬Z∧¬A)∨(X∧Y∧Z∧¬A) |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
нажмите на таблицу для просмотра* Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
X | Y | Z | A | F |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
F
сднф = ¬X∧Y∧¬Z∧¬A ∨ ¬X∧Y∧Z∧¬A ∨ X∧Y∧Z∧¬A
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
X | Y | Z | A | F |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
F
скнф = (X∨Y∨Z∨A) ∧ (X∨Y∨Z∨¬A) ∧ (X∨Y∨¬Z∨A) ∧ (X∨Y∨¬Z∨¬A) ∧ (X∨¬Y∨Z∨¬A) ∧ (X∨¬Y∨¬Z∨¬A) ∧ (¬X∨Y∨Z∨A) ∧ (¬X∨Y∨Z∨¬A) ∧ (¬X∨Y∨¬Z∨A) ∧ (¬X∨Y∨¬Z∨¬A) ∧ (¬X∨¬Y∨Z∨A) ∧ (¬X∨¬Y∨Z∨¬A) ∧ (¬X∨¬Y∨¬Z∨¬A)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
X | Y | Z | A | Fж |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина:
F
ж = C
0000 ⊕ C
1000∧X ⊕ C
0100∧Y ⊕ C
0010∧Z ⊕ C
0001∧A ⊕ C
1100∧X∧Y ⊕ C
1010∧X∧Z ⊕ C
1001∧X∧A ⊕ C
0110∧Y∧Z ⊕ C
0101∧Y∧A ⊕ C
0011∧Z∧A ⊕ C
1110∧X∧Y∧Z ⊕ C
1101∧X∧Y∧A ⊕ C
1011∧X∧Z∧A ⊕ C
0111∧Y∧Z∧A ⊕ C
1111∧X∧Y∧Z∧A
Так как F
ж(0000) = 0, то С
0000 = 0.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(1000) = С
0000 ⊕ С
1000 = 0 => С
1000 = 0 ⊕ 0 = 0
F
ж(0100) = С
0000 ⊕ С
0100 = 1 => С
0100 = 0 ⊕ 1 = 1
F
ж(0010) = С
0000 ⊕ С
0010 = 0 => С
0010 = 0 ⊕ 0 = 0
F
ж(0001) = С
0000 ⊕ С
0001 = 0 => С
0001 = 0 ⊕ 0 = 0
F
ж(1100) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
1100 = 0 => С
1100 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
F
ж(1010) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
1010 = 0 => С
1010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(1001) = С
0000 ⊕ С
1000 ⊕ С
0001 ⊕ С
1001 = 0 => С
1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(0110) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0110 = 1 => С
0110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
F
ж(0101) = С
0000 ⊕ С
0100 ⊕ С
0001 ⊕ С
0101 = 0 => С
0101 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
F
ж(0011) = С
0000 ⊕ С
0010 ⊕ С
0001 ⊕ С
0011 = 0 => С
0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(1110) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
1100 ⊕ С
1010 ⊕ С
0110 ⊕ С
1110 = 1 => С
1110 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
F
ж(1101) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0001 ⊕ С
1100 ⊕ С
1001 ⊕ С
0101 ⊕ С
1101 = 0 => С
1101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1
F
ж(1011) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
0001 ⊕ С
1010 ⊕ С
1001 ⊕ С
0011 ⊕ С
1011 = 0 => С
1011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(0111) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
0111 = 0 => С
0111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(1111) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
1100 ⊕ С
1010 ⊕ С
1001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
1110 ⊕ С
1101 ⊕ С
1011 ⊕ С
0111 ⊕ С
1111 = 0 => С
1111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Таким образом, полином Жегалкина будет равен:
F
ж = Y ⊕ X∧Y ⊕ Y∧A ⊕ X∧Y∧Z ⊕ X∧Y∧A ⊕ X∧Y∧Z∧A
Логическая схема, соответствующая полиному Жегалкина: