Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции ¬A∨¬B→A∧(¬B∨¬A):
Промежуточные таблицы истинности:¬B: ¬A: (¬B)∨(¬A): B | A | ¬B | ¬A | (¬B)∨(¬A) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
A∧((¬B)∨(¬A)): A | B | ¬B | ¬A | (¬B)∨(¬A) | A∧((¬B)∨(¬A)) | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
(¬A)∨(¬B): A | B | ¬A | ¬B | (¬A)∨(¬B) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
((¬A)∨(¬B))→(A∧((¬B)∨(¬A))): A | B | ¬A | ¬B | (¬A)∨(¬B) | ¬B | ¬A | (¬B)∨(¬A) | A∧((¬B)∨(¬A)) | ((¬A)∨(¬B))→(A∧((¬B)∨(¬A))) | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Общая таблица истинности:A | B | ¬B | ¬A | (¬B)∨(¬A) | A∧((¬B)∨(¬A)) | (¬A)∨(¬B) | ¬A∨¬B→A∧(¬B∨¬A) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: F сднф = A∧¬B ∨ A∧B Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: F скнф = (A∨B) ∧ (A∨¬B) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции Построим полином Жегалкина: F ж = C 00 ⊕ C 10∧A ⊕ C 01∧B ⊕ C 11∧A∧B Так как F ж(00) = 0, то С 00 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(10) = С 00 ⊕ С 10 = 1 => С 10 = 0 ⊕ 1 = 1 F ж(01) = С 00 ⊕ С 01 = 0 => С 01 = 0 ⊕ 0 = 0 F ж(11) = С 00 ⊕ С 10 ⊕ С 01 ⊕ С 11 = 1 => С 11 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0 Таким образом, полином Жегалкина будет равен: F ж = A Логическая схема, соответствующая полиному Жегалкина:
|
![](/img/grey.gif) |
![](/img/grey.gif) |
![](/img/spacer.gif) |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|