Таблица истинности для функции (C∨B)∧A∧¬A:


Промежуточные таблицы истинности:
C∨B:
CBC∨B
000
011
101
111

¬A:
A¬A
01
10

(C∨B)∧A:
CBAC∨B(C∨B)∧A
00000
00100
01010
01111
10010
10111
11010
11111

((C∨B)∧A)∧(¬A):
CBAC∨B(C∨B)∧A¬A((C∨B)∧A)∧(¬A)
0000010
0010000
0101010
0111100
1001010
1011100
1101010
1111100

Общая таблица истинности:

CBAC∨B¬A(C∨B)∧A(C∨B)∧A∧¬A
0000100
0010000
0101100
0111010
1001100
1011010
1101100
1111010

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
CBAF
0000
0010
0100
0110
1000
1010
1100
1110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
CBAF
0000
0010
0100
0110
1000
1010
1100
1110
Fскнф = (C∨B∨A) ∧ (C∨B∨¬A) ∧ (C∨¬B∨A) ∧ (C∨¬B∨¬A) ∧ (¬C∨B∨A) ∧ (¬C∨B∨¬A) ∧ (¬C∨¬B∨A) ∧ (¬C∨¬B∨¬A)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
CBAFж
0000
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧C ⊕ C010∧B ⊕ C001∧A ⊕ C110∧C∧B ⊕ C101∧C∧A ⊕ C011∧B∧A ⊕ C111∧C∧B∧A

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы