Таблица истинности для функции (A∧D∧F∧A∧E)∧C∧D∧F:


Промежуточные таблицы истинности:
A∧D:
ADA∧D
000
010
100
111

(A∧D)∧F:
ADFA∧D(A∧D)∧F
00000
00100
01000
01100
10000
10100
11010
11111

((A∧D)∧F)∧A:
ADFA∧D(A∧D)∧F((A∧D)∧F)∧A
000000
001000
010000
011000
100000
101000
110100
111111

(((A∧D)∧F)∧A)∧E:
ADFEA∧D(A∧D)∧F((A∧D)∧F)∧A(((A∧D)∧F)∧A)∧E
00000000
00010000
00100000
00110000
01000000
01010000
01100000
01110000
10000000
10010000
10100000
10110000
11001000
11011000
11101110
11111111

((((A∧D)∧F)∧A)∧E)∧C:
ADFECA∧D(A∧D)∧F((A∧D)∧F)∧A(((A∧D)∧F)∧A)∧E((((A∧D)∧F)∧A)∧E)∧C
0000000000
0000100000
0001000000
0001100000
0010000000
0010100000
0011000000
0011100000
0100000000
0100100000
0101000000
0101100000
0110000000
0110100000
0111000000
0111100000
1000000000
1000100000
1001000000
1001100000
1010000000
1010100000
1011000000
1011100000
1100010000
1100110000
1101010000
1101110000
1110011100
1110111100
1111011110
1111111111

(((((A∧D)∧F)∧A)∧E)∧C)∧D:
ADFECA∧D(A∧D)∧F((A∧D)∧F)∧A(((A∧D)∧F)∧A)∧E((((A∧D)∧F)∧A)∧E)∧C(((((A∧D)∧F)∧A)∧E)∧C)∧D
00000000000
00001000000
00010000000
00011000000
00100000000
00101000000
00110000000
00111000000
01000000000
01001000000
01010000000
01011000000
01100000000
01101000000
01110000000
01111000000
10000000000
10001000000
10010000000
10011000000
10100000000
10101000000
10110000000
10111000000
11000100000
11001100000
11010100000
11011100000
11100111000
11101111000
11110111100
11111111111

((((((A∧D)∧F)∧A)∧E)∧C)∧D)∧F:
ADFECA∧D(A∧D)∧F((A∧D)∧F)∧A(((A∧D)∧F)∧A)∧E((((A∧D)∧F)∧A)∧E)∧C(((((A∧D)∧F)∧A)∧E)∧C)∧D((((((A∧D)∧F)∧A)∧E)∧C)∧D)∧F
000000000000
000010000000
000100000000
000110000000
001000000000
001010000000
001100000000
001110000000
010000000000
010010000000
010100000000
010110000000
011000000000
011010000000
011100000000
011110000000
100000000000
100010000000
100100000000
100110000000
101000000000
101010000000
101100000000
101110000000
110001000000
110011000000
110101000000
110111000000
111001110000
111011110000
111101111000
111111111111

Общая таблица истинности:

ADFECA∧D(A∧D)∧F((A∧D)∧F)∧A(((A∧D)∧F)∧A)∧E((((A∧D)∧F)∧A)∧E)∧C(((((A∧D)∧F)∧A)∧E)∧C)∧D(A∧D∧F∧A∧E)∧C∧D∧F
000000000000
000010000000
000100000000
000110000000
001000000000
001010000000
001100000000
001110000000
010000000000
010010000000
010100000000
010110000000
011000000000
011010000000
011100000000
011110000000
100000000000
100010000000
100100000000
100110000000
101000000000
101010000000
101100000000
101110000000
110001000000
110011000000
110101000000
110111000000
111001110000
111011110000
111101111000
111111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ADFECF
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111111
Fсднф = A∧D∧F∧E∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ADFECF
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111111
Fскнф = (A∨D∨F∨E∨C) ∧ (A∨D∨F∨E∨¬C) ∧ (A∨D∨F∨¬E∨C) ∧ (A∨D∨F∨¬E∨¬C) ∧ (A∨D∨¬F∨E∨C) ∧ (A∨D∨¬F∨E∨¬C) ∧ (A∨D∨¬F∨¬E∨C) ∧ (A∨D∨¬F∨¬E∨¬C) ∧ (A∨¬D∨F∨E∨C) ∧ (A∨¬D∨F∨E∨¬C) ∧ (A∨¬D∨F∨¬E∨C) ∧ (A∨¬D∨F∨¬E∨¬C) ∧ (A∨¬D∨¬F∨E∨C) ∧ (A∨¬D∨¬F∨E∨¬C) ∧ (A∨¬D∨¬F∨¬E∨C) ∧ (A∨¬D∨¬F∨¬E∨¬C) ∧ (¬A∨D∨F∨E∨C) ∧ (¬A∨D∨F∨E∨¬C) ∧ (¬A∨D∨F∨¬E∨C) ∧ (¬A∨D∨F∨¬E∨¬C) ∧ (¬A∨D∨¬F∨E∨C) ∧ (¬A∨D∨¬F∨E∨¬C) ∧ (¬A∨D∨¬F∨¬E∨C) ∧ (¬A∨D∨¬F∨¬E∨¬C) ∧ (¬A∨¬D∨F∨E∨C) ∧ (¬A∨¬D∨F∨E∨¬C) ∧ (¬A∨¬D∨F∨¬E∨C) ∧ (¬A∨¬D∨F∨¬E∨¬C) ∧ (¬A∨¬D∨¬F∨E∨C) ∧ (¬A∨¬D∨¬F∨E∨¬C) ∧ (¬A∨¬D∨¬F∨¬E∨C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ADFECFж
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100000
100010
100100
100110
101000
101010
101100
101110
110000
110010
110100
110110
111000
111010
111100
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧A ⊕ C01000∧D ⊕ C00100∧F ⊕ C00010∧E ⊕ C00001∧C ⊕ C11000∧A∧D ⊕ C10100∧A∧F ⊕ C10010∧A∧E ⊕ C10001∧A∧C ⊕ C01100∧D∧F ⊕ C01010∧D∧E ⊕ C01001∧D∧C ⊕ C00110∧F∧E ⊕ C00101∧F∧C ⊕ C00011∧E∧C ⊕ C11100∧A∧D∧F ⊕ C11010∧A∧D∧E ⊕ C11001∧A∧D∧C ⊕ C10110∧A∧F∧E ⊕ C10101∧A∧F∧C ⊕ C10011∧A∧E∧C ⊕ C01110∧D∧F∧E ⊕ C01101∧D∧F∧C ⊕ C01011∧D∧E∧C ⊕ C00111∧F∧E∧C ⊕ C11110∧A∧D∧F∧E ⊕ C11101∧A∧D∧F∧C ⊕ C11011∧A∧D∧E∧C ⊕ C10111∧A∧F∧E∧C ⊕ C01111∧D∧F∧E∧C ⊕ C11111∧A∧D∧F∧E∧C

Так как Fж(00000) = 0, то С00000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 0 => С10000 = 0 ⊕ 0 = 0
Fж(01000) = С00000 ⊕ С01000 = 0 => С01000 = 0 ⊕ 0 = 0
Fж(00100) = С00000 ⊕ С00100 = 0 => С00100 = 0 ⊕ 0 = 0
Fж(00010) = С00000 ⊕ С00010 = 0 => С00010 = 0 ⊕ 0 = 0
Fж(00001) = С00000 ⊕ С00001 = 0 => С00001 = 0 ⊕ 0 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 0 => С10100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 0 => С10010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 0 => С10001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 0 => С01100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 0 => С01010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 0 => С01001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 0 => С00110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 0 => С00101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 0 => С00011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 0 => С11001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 0 => С10110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 0 => С10101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 0 => С10011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 0 => С01110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 0 => С01101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 0 => С01011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 0 => С00111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 0 => С10111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 0 => С01111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A∧D∧F∧E∧C
Логическая схема, соответствующая полиному Жегалкина: