Таблица истинности для функции F≡¬(B∧V∧C)∧(D∧¬B)∧V∧¬A∧B:


Промежуточные таблицы истинности:
B∧V:
BVB∧V
000
010
100
111

(B∧V)∧C:
BVCB∧V(B∧V)∧C
00000
00100
01000
01100
10000
10100
11010
11111

¬B:
B¬B
01
10

D∧(¬B):
DB¬BD∧(¬B)
0010
0100
1011
1100

¬((B∧V)∧C):
BVCB∧V(B∧V)∧C¬((B∧V)∧C)
000001
001001
010001
011001
100001
101001
110101
111110

¬A:
A¬A
01
10

(¬((B∧V)∧C))∧(D∧(¬B)):
BVCDB∧V(B∧V)∧C¬((B∧V)∧C)¬BD∧(¬B)(¬((B∧V)∧C))∧(D∧(¬B))
0000001100
0001001111
0010001100
0011001111
0100001100
0101001111
0110001100
0111001111
1000001000
1001001000
1010001000
1011001000
1100101000
1101101000
1110110000
1111110000

((¬((B∧V)∧C))∧(D∧(¬B)))∧V:
BVCDB∧V(B∧V)∧C¬((B∧V)∧C)¬BD∧(¬B)(¬((B∧V)∧C))∧(D∧(¬B))((¬((B∧V)∧C))∧(D∧(¬B)))∧V
00000011000
00010011110
00100011000
00110011110
01000011000
01010011111
01100011000
01110011111
10000010000
10010010000
10100010000
10110010000
11001010000
11011010000
11101100000
11111100000

(((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A):
BVCDAB∧V(B∧V)∧C¬((B∧V)∧C)¬BD∧(¬B)(¬((B∧V)∧C))∧(D∧(¬B))((¬((B∧V)∧C))∧(D∧(¬B)))∧V¬A(((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A)
00000001100010
00001001100000
00010001111010
00011001111000
00100001100010
00101001100000
00110001111010
00111001111000
01000001100010
01001001100000
01010001111111
01011001111100
01100001100010
01101001100000
01110001111111
01111001111100
10000001000010
10001001000000
10010001000010
10011001000000
10100001000010
10101001000000
10110001000010
10111001000000
11000101000010
11001101000000
11010101000010
11011101000000
11100110000010
11101110000000
11110110000010
11111110000000

((((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A))∧B:
BVCDAB∧V(B∧V)∧C¬((B∧V)∧C)¬BD∧(¬B)(¬((B∧V)∧C))∧(D∧(¬B))((¬((B∧V)∧C))∧(D∧(¬B)))∧V¬A(((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A)((((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A))∧B
000000011000100
000010011000000
000100011110100
000110011110000
001000011000100
001010011000000
001100011110100
001110011110000
010000011000100
010010011000000
010100011111110
010110011111000
011000011000100
011010011000000
011100011111110
011110011111000
100000010000100
100010010000000
100100010000100
100110010000000
101000010000100
101010010000000
101100010000100
101110010000000
110001010000100
110011010000000
110101010000100
110111010000000
111001100000100
111011100000000
111101100000100
111111100000000

F≡(((((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A))∧B):
FBVCDAB∧V(B∧V)∧C¬((B∧V)∧C)¬BD∧(¬B)(¬((B∧V)∧C))∧(D∧(¬B))((¬((B∧V)∧C))∧(D∧(¬B)))∧V¬A(((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A)((((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A))∧BF≡(((((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A))∧B)
00000000110001001
00000100110000001
00001000111101001
00001100111100001
00010000110001001
00010100110000001
00011000111101001
00011100111100001
00100000110001001
00100100110000001
00101000111111101
00101100111110001
00110000110001001
00110100110000001
00111000111111101
00111100111110001
01000000100001001
01000100100000001
01001000100001001
01001100100000001
01010000100001001
01010100100000001
01011000100001001
01011100100000001
01100010100001001
01100110100000001
01101010100001001
01101110100000001
01110011000001001
01110111000000001
01111011000001001
01111111000000001
10000000110001000
10000100110000000
10001000111101000
10001100111100000
10010000110001000
10010100110000000
10011000111101000
10011100111100000
10100000110001000
10100100110000000
10101000111111100
10101100111110000
10110000110001000
10110100110000000
10111000111111100
10111100111110000
11000000100001000
11000100100000000
11001000100001000
11001100100000000
11010000100001000
11010100100000000
11011000100001000
11011100100000000
11100010100001000
11100110100000000
11101010100001000
11101110100000000
11110011000001000
11110111000000000
11111011000001000
11111111000000000

Общая таблица истинности:

FBVCDAB∧V(B∧V)∧C¬BD∧(¬B)¬((B∧V)∧C)¬A(¬((B∧V)∧C))∧(D∧(¬B))((¬((B∧V)∧C))∧(D∧(¬B)))∧V(((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A)((((¬((B∧V)∧C))∧(D∧(¬B)))∧V)∧(¬A))∧BF≡¬(B∧V∧C)∧(D∧¬B)∧V∧¬A∧B
00000000101100001
00000100101000001
00001000111110001
00001100111010001
00010000101100001
00010100101000001
00011000111110001
00011100111010001
00100000101100001
00100100101000001
00101000111111101
00101100111011001
00110000101100001
00110100101000001
00111000111111101
00111100111011001
01000000001100001
01000100001000001
01001000001100001
01001100001000001
01010000001100001
01010100001000001
01011000001100001
01011100001000001
01100010001100001
01100110001000001
01101010001100001
01101110001000001
01110011000100001
01110111000000001
01111011000100001
01111111000000001
10000000101100000
10000100101000000
10001000111110000
10001100111010000
10010000101100000
10010100101000000
10011000111110000
10011100111010000
10100000101100000
10100100101000000
10101000111111100
10101100111011000
10110000101100000
10110100101000000
10111000111111100
10111100111011000
11000000001100000
11000100001000000
11001000001100000
11001100001000000
11010000001100000
11010100001000000
11011000001100000
11011100001000000
11100010001100000
11100110001000000
11101010001100000
11101110001000000
11110011000100000
11110111000000000
11111011000100000
11111111000000000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FBVCDAF
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111111
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100000
1100010
1100100
1100110
1101000
1101010
1101100
1101110
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111110
Fсднф = ¬F∧¬B∧¬V∧¬C∧¬D∧¬A ∨ ¬F∧¬B∧¬V∧¬C∧¬D∧A ∨ ¬F∧¬B∧¬V∧¬C∧D∧¬A ∨ ¬F∧¬B∧¬V∧¬C∧D∧A ∨ ¬F∧¬B∧¬V∧C∧¬D∧¬A ∨ ¬F∧¬B∧¬V∧C∧¬D∧A ∨ ¬F∧¬B∧¬V∧C∧D∧¬A ∨ ¬F∧¬B∧¬V∧C∧D∧A ∨ ¬F∧¬B∧V∧¬C∧¬D∧¬A ∨ ¬F∧¬B∧V∧¬C∧¬D∧A ∨ ¬F∧¬B∧V∧¬C∧D∧¬A ∨ ¬F∧¬B∧V∧¬C∧D∧A ∨ ¬F∧¬B∧V∧C∧¬D∧¬A ∨ ¬F∧¬B∧V∧C∧¬D∧A ∨ ¬F∧¬B∧V∧C∧D∧¬A ∨ ¬F∧¬B∧V∧C∧D∧A ∨ ¬F∧B∧¬V∧¬C∧¬D∧¬A ∨ ¬F∧B∧¬V∧¬C∧¬D∧A ∨ ¬F∧B∧¬V∧¬C∧D∧¬A ∨ ¬F∧B∧¬V∧¬C∧D∧A ∨ ¬F∧B∧¬V∧C∧¬D∧¬A ∨ ¬F∧B∧¬V∧C∧¬D∧A ∨ ¬F∧B∧¬V∧C∧D∧¬A ∨ ¬F∧B∧¬V∧C∧D∧A ∨ ¬F∧B∧V∧¬C∧¬D∧¬A ∨ ¬F∧B∧V∧¬C∧¬D∧A ∨ ¬F∧B∧V∧¬C∧D∧¬A ∨ ¬F∧B∧V∧¬C∧D∧A ∨ ¬F∧B∧V∧C∧¬D∧¬A ∨ ¬F∧B∧V∧C∧¬D∧A ∨ ¬F∧B∧V∧C∧D∧¬A ∨ ¬F∧B∧V∧C∧D∧A
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FBVCDAF
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111111
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100000
1100010
1100100
1100110
1101000
1101010
1101100
1101110
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111110
Fскнф = (¬F∨B∨V∨C∨D∨A) ∧ (¬F∨B∨V∨C∨D∨¬A) ∧ (¬F∨B∨V∨C∨¬D∨A) ∧ (¬F∨B∨V∨C∨¬D∨¬A) ∧ (¬F∨B∨V∨¬C∨D∨A) ∧ (¬F∨B∨V∨¬C∨D∨¬A) ∧ (¬F∨B∨V∨¬C∨¬D∨A) ∧ (¬F∨B∨V∨¬C∨¬D∨¬A) ∧ (¬F∨B∨¬V∨C∨D∨A) ∧ (¬F∨B∨¬V∨C∨D∨¬A) ∧ (¬F∨B∨¬V∨C∨¬D∨A) ∧ (¬F∨B∨¬V∨C∨¬D∨¬A) ∧ (¬F∨B∨¬V∨¬C∨D∨A) ∧ (¬F∨B∨¬V∨¬C∨D∨¬A) ∧ (¬F∨B∨¬V∨¬C∨¬D∨A) ∧ (¬F∨B∨¬V∨¬C∨¬D∨¬A) ∧ (¬F∨¬B∨V∨C∨D∨A) ∧ (¬F∨¬B∨V∨C∨D∨¬A) ∧ (¬F∨¬B∨V∨C∨¬D∨A) ∧ (¬F∨¬B∨V∨C∨¬D∨¬A) ∧ (¬F∨¬B∨V∨¬C∨D∨A) ∧ (¬F∨¬B∨V∨¬C∨D∨¬A) ∧ (¬F∨¬B∨V∨¬C∨¬D∨A) ∧ (¬F∨¬B∨V∨¬C∨¬D∨¬A) ∧ (¬F∨¬B∨¬V∨C∨D∨A) ∧ (¬F∨¬B∨¬V∨C∨D∨¬A) ∧ (¬F∨¬B∨¬V∨C∨¬D∨A) ∧ (¬F∨¬B∨¬V∨C∨¬D∨¬A) ∧ (¬F∨¬B∨¬V∨¬C∨D∨A) ∧ (¬F∨¬B∨¬V∨¬C∨D∨¬A) ∧ (¬F∨¬B∨¬V∨¬C∨¬D∨A) ∧ (¬F∨¬B∨¬V∨¬C∨¬D∨¬A)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FBVCDAFж
0000001
0000011
0000101
0000111
0001001
0001011
0001101
0001111
0010001
0010011
0010101
0010111
0011001
0011011
0011101
0011111
0100001
0100011
0100101
0100111
0101001
0101011
0101101
0101111
0110001
0110011
0110101
0110111
0111001
0111011
0111101
0111111
1000000
1000010
1000100
1000110
1001000
1001010
1001100
1001110
1010000
1010010
1010100
1010110
1011000
1011010
1011100
1011110
1100000
1100010
1100100
1100110
1101000
1101010
1101100
1101110
1110000
1110010
1110100
1110110
1111000
1111010
1111100
1111110

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧F ⊕ C010000∧B ⊕ C001000∧V ⊕ C000100∧C ⊕ C000010∧D ⊕ C000001∧A ⊕ C110000∧F∧B ⊕ C101000∧F∧V ⊕ C100100∧F∧C ⊕ C100010∧F∧D ⊕ C100001∧F∧A ⊕ C011000∧B∧V ⊕ C010100∧B∧C ⊕ C010010∧B∧D ⊕ C010001∧B∧A ⊕ C001100∧V∧C ⊕ C001010∧V∧D ⊕ C001001∧V∧A ⊕ C000110∧C∧D ⊕ C000101∧C∧A ⊕ C000011∧D∧A ⊕ C111000∧F∧B∧V ⊕ C110100∧F∧B∧C ⊕ C110010∧F∧B∧D ⊕ C110001∧F∧B∧A ⊕ C101100∧F∧V∧C ⊕ C101010∧F∧V∧D ⊕ C101001∧F∧V∧A ⊕ C100110∧F∧C∧D ⊕ C100101∧F∧C∧A ⊕ C100011∧F∧D∧A ⊕ C011100∧B∧V∧C ⊕ C011010∧B∧V∧D ⊕ C011001∧B∧V∧A ⊕ C010110∧B∧C∧D ⊕ C010101∧B∧C∧A ⊕ C010011∧B∧D∧A ⊕ C001110∧V∧C∧D ⊕ C001101∧V∧C∧A ⊕ C001011∧V∧D∧A ⊕ C000111∧C∧D∧A ⊕ C111100∧F∧B∧V∧C ⊕ C111010∧F∧B∧V∧D ⊕ C111001∧F∧B∧V∧A ⊕ C110110∧F∧B∧C∧D ⊕ C110101∧F∧B∧C∧A ⊕ C110011∧F∧B∧D∧A ⊕ C101110∧F∧V∧C∧D ⊕ C101101∧F∧V∧C∧A ⊕ C101011∧F∧V∧D∧A ⊕ C100111∧F∧C∧D∧A ⊕ C011110∧B∧V∧C∧D ⊕ C011101∧B∧V∧C∧A ⊕ C011011∧B∧V∧D∧A ⊕ C010111∧B∧C∧D∧A ⊕ C001111∧V∧C∧D∧A ⊕ C111110∧F∧B∧V∧C∧D ⊕ C111101∧F∧B∧V∧C∧A ⊕ C111011∧F∧B∧V∧D∧A ⊕ C110111∧F∧B∧C∧D∧A ⊕ C101111∧F∧V∧C∧D∧A ⊕ C011111∧B∧V∧C∧D∧A ⊕ C111111∧F∧B∧V∧C∧D∧A

Так как Fж(000000) = 1, то С000000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 0 => С100000 = 1 ⊕ 0 = 1
Fж(010000) = С000000 ⊕ С010000 = 1 => С010000 = 1 ⊕ 1 = 0
Fж(001000) = С000000 ⊕ С001000 = 1 => С001000 = 1 ⊕ 1 = 0
Fж(000100) = С000000 ⊕ С000100 = 1 => С000100 = 1 ⊕ 1 = 0
Fж(000010) = С000000 ⊕ С000010 = 1 => С000010 = 1 ⊕ 1 = 0
Fж(000001) = С000000 ⊕ С000001 = 1 => С000001 = 1 ⊕ 1 = 0
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 0 => С110000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 0 => С101000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 0 => С100100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 0 => С100010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 0 => С100001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 1 => С011000 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 1 => С010100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 1 => С010010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 1 => С010001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 1 => С001100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 1 => С001010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 1 => С001001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 1 => С000110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 1 => С000101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 1 => С000011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 0 => С111000 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 0 => С110100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 0 => С110010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 0 => С110001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 0 => С101100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 0 => С101010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 0 => С101001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 0 => С100110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 0 => С100101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 0 => С100011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 1 => С011100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 1 => С010110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 1 => С010101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 1 => С010011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 1 => С001110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 1 => С001101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 1 => С001011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 1 => С000111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 0 => С111100 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 0 => С111010 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 0 => С111001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 0 => С110110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 0 => С110101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 0 => С110011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 0 => С101110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 0 => С101101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 0 => С101011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 0 => С100111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 1 => С011110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 1 => С011101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 1 => С011011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 1 => С010111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 1 => С001111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 0 => С111110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 0 => С111101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 0 => С111011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 0 => С110111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 0 => С101111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 1 => С011111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 0 => С111111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ F
Логическая схема, соответствующая полиному Жегалкина: