Таблица истинности для функции (C∧A)≡B:


Промежуточные таблицы истинности:
C∧A:
CAC∧A
000
010
100
111

(C∧A)≡B:
CABC∧A(C∧A)≡B
00001
00100
01001
01100
10001
10100
11010
11111

Общая таблица истинности:

CABC∧A(C∧A)≡B
00001
00100
01001
01100
10001
10100
11010
11111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
CABF
0001
0010
0101
0110
1001
1010
1100
1111
Fсднф = ¬C∧¬A∧¬B ∨ ¬C∧A∧¬B ∨ C∧¬A∧¬B ∨ C∧A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
CABF
0001
0010
0101
0110
1001
1010
1100
1111
Fскнф = (C∨A∨¬B) ∧ (C∨¬A∨¬B) ∧ (¬C∨A∨¬B) ∧ (¬C∨¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
CABFж
0001
0010
0101
0110
1001
1010
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧C ⊕ C010∧A ⊕ C001∧B ⊕ C110∧C∧A ⊕ C101∧C∧B ⊕ C011∧A∧B ⊕ C111∧C∧A∧B

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 0 ⊕ 1 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ C∧A
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы