Промежуточные таблицы истинности:A∧B:
¬B:
¬A:
(¬B)→(¬A):
B | A | ¬B | ¬A | (¬B)→(¬A) |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
((¬B)→(¬A))∧X:
B | A | X | ¬B | ¬A | (¬B)→(¬A) | ((¬B)→(¬A))∧X |
0 | 0 | 0 | 1 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 |
(((¬B)→(¬A))∧X)∧O:
B | A | X | O | ¬B | ¬A | (¬B)→(¬A) | ((¬B)→(¬A))∧X | (((¬B)→(¬A))∧X)∧O |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
((((¬B)→(¬A))∧X)∧O)∧R:
B | A | X | O | R | ¬B | ¬A | (¬B)→(¬A) | ((¬B)→(¬A))∧X | (((¬B)→(¬A))∧X)∧O | ((((¬B)→(¬A))∧X)∧O)∧R |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
(((((¬B)→(¬A))∧X)∧O)∧R)∧A:
B | A | X | O | R | ¬B | ¬A | (¬B)→(¬A) | ((¬B)→(¬A))∧X | (((¬B)→(¬A))∧X)∧O | ((((¬B)→(¬A))∧X)∧O)∧R | (((((¬B)→(¬A))∧X)∧O)∧R)∧A |
0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
(A∧B)→((((((¬B)→(¬A))∧X)∧O)∧R)∧A):
A | B | X | O | R | A∧B | ¬B | ¬A | (¬B)→(¬A) | ((¬B)→(¬A))∧X | (((¬B)→(¬A))∧X)∧O | ((((¬B)→(¬A))∧X)∧O)∧R | (((((¬B)→(¬A))∧X)∧O)∧R)∧A | (A∧B)→((((((¬B)→(¬A))∧X)∧O)∧R)∧A) |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Общая таблица истинности:
A | B | X | O | R | A∧B | ¬B | ¬A | (¬B)→(¬A) | ((¬B)→(¬A))∧X | (((¬B)→(¬A))∧X)∧O | ((((¬B)→(¬A))∧X)∧O)∧R | (((((¬B)→(¬A))∧X)∧O)∧R)∧A | (A∧B)→(¬B→¬A)∧X∧O∧R∧A |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
A | B | X | O | R | F |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |
F
сднф = ¬A∧¬B∧¬X∧¬O∧¬R ∨ ¬A∧¬B∧¬X∧¬O∧R ∨ ¬A∧¬B∧¬X∧O∧¬R ∨ ¬A∧¬B∧¬X∧O∧R ∨ ¬A∧¬B∧X∧¬O∧¬R ∨ ¬A∧¬B∧X∧¬O∧R ∨ ¬A∧¬B∧X∧O∧¬R ∨ ¬A∧¬B∧X∧O∧R ∨ ¬A∧B∧¬X∧¬O∧¬R ∨ ¬A∧B∧¬X∧¬O∧R ∨ ¬A∧B∧¬X∧O∧¬R ∨ ¬A∧B∧¬X∧O∧R ∨ ¬A∧B∧X∧¬O∧¬R ∨ ¬A∧B∧X∧¬O∧R ∨ ¬A∧B∧X∧O∧¬R ∨ ¬A∧B∧X∧O∧R ∨ A∧¬B∧¬X∧¬O∧¬R ∨ A∧¬B∧¬X∧¬O∧R ∨ A∧¬B∧¬X∧O∧¬R ∨ A∧¬B∧¬X∧O∧R ∨ A∧¬B∧X∧¬O∧¬R ∨ A∧¬B∧X∧¬O∧R ∨ A∧¬B∧X∧O∧¬R ∨ A∧¬B∧X∧O∧R ∨ A∧B∧X∧O∧R
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
A | B | X | O | R | F |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |
F
скнф = (¬A∨¬B∨X∨O∨R) ∧ (¬A∨¬B∨X∨O∨¬R) ∧ (¬A∨¬B∨X∨¬O∨R) ∧ (¬A∨¬B∨X∨¬O∨¬R) ∧ (¬A∨¬B∨¬X∨O∨R) ∧ (¬A∨¬B∨¬X∨O∨¬R) ∧ (¬A∨¬B∨¬X∨¬O∨R)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
A | B | X | O | R | Fж |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 |
1 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина:
F
ж = C
00000 ⊕ C
10000∧A ⊕ C
01000∧B ⊕ C
00100∧X ⊕ C
00010∧O ⊕ C
00001∧R ⊕ C
11000∧A∧B ⊕ C
10100∧A∧X ⊕ C
10010∧A∧O ⊕ C
10001∧A∧R ⊕ C
01100∧B∧X ⊕ C
01010∧B∧O ⊕ C
01001∧B∧R ⊕ C
00110∧X∧O ⊕ C
00101∧X∧R ⊕ C
00011∧O∧R ⊕ C
11100∧A∧B∧X ⊕ C
11010∧A∧B∧O ⊕ C
11001∧A∧B∧R ⊕ C
10110∧A∧X∧O ⊕ C
10101∧A∧X∧R ⊕ C
10011∧A∧O∧R ⊕ C
01110∧B∧X∧O ⊕ C
01101∧B∧X∧R ⊕ C
01011∧B∧O∧R ⊕ C
00111∧X∧O∧R ⊕ C
11110∧A∧B∧X∧O ⊕ C
11101∧A∧B∧X∧R ⊕ C
11011∧A∧B∧O∧R ⊕ C
10111∧A∧X∧O∧R ⊕ C
01111∧B∧X∧O∧R ⊕ C
11111∧A∧B∧X∧O∧R
Так как F
ж(00000) = 1, то С
00000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(10000) = С
00000 ⊕ С
10000 = 1 => С
10000 = 1 ⊕ 1 = 0
F
ж(01000) = С
00000 ⊕ С
01000 = 1 => С
01000 = 1 ⊕ 1 = 0
F
ж(00100) = С
00000 ⊕ С
00100 = 1 => С
00100 = 1 ⊕ 1 = 0
F
ж(00010) = С
00000 ⊕ С
00010 = 1 => С
00010 = 1 ⊕ 1 = 0
F
ж(00001) = С
00000 ⊕ С
00001 = 1 => С
00001 = 1 ⊕ 1 = 0
F
ж(11000) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
11000 = 0 => С
11000 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
F
ж(10100) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
10100 = 1 => С
10100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(10010) = С
00000 ⊕ С
10000 ⊕ С
00010 ⊕ С
10010 = 1 => С
10010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(10001) = С
00000 ⊕ С
10000 ⊕ С
00001 ⊕ С
10001 = 1 => С
10001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01100) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
01100 = 1 => С
01100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01010) = С
00000 ⊕ С
01000 ⊕ С
00010 ⊕ С
01010 = 1 => С
01010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01001) = С
00000 ⊕ С
01000 ⊕ С
00001 ⊕ С
01001 = 1 => С
01001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(00110) = С
00000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00110 = 1 => С
00110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(00101) = С
00000 ⊕ С
00100 ⊕ С
00001 ⊕ С
00101 = 1 => С
00101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(00011) = С
00000 ⊕ С
00010 ⊕ С
00001 ⊕ С
00011 = 1 => С
00011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(11100) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
11000 ⊕ С
10100 ⊕ С
01100 ⊕ С
11100 = 0 => С
11100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11010) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00010 ⊕ С
11000 ⊕ С
10010 ⊕ С
01010 ⊕ С
11010 = 0 => С
11010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11001) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00001 ⊕ С
11000 ⊕ С
10001 ⊕ С
01001 ⊕ С
11001 = 0 => С
11001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10110) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
00010 ⊕ С
10100 ⊕ С
10010 ⊕ С
00110 ⊕ С
10110 = 1 => С
10110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(10101) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
00001 ⊕ С
10100 ⊕ С
10001 ⊕ С
00101 ⊕ С
10101 = 1 => С
10101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(10011) = С
00000 ⊕ С
10000 ⊕ С
00010 ⊕ С
00001 ⊕ С
10010 ⊕ С
10001 ⊕ С
00011 ⊕ С
10011 = 1 => С
10011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01110) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
01100 ⊕ С
01010 ⊕ С
00110 ⊕ С
01110 = 1 => С
01110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01101) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00001 ⊕ С
01100 ⊕ С
01001 ⊕ С
00101 ⊕ С
01101 = 1 => С
01101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01011) = С
00000 ⊕ С
01000 ⊕ С
00010 ⊕ С
00001 ⊕ С
01010 ⊕ С
01001 ⊕ С
00011 ⊕ С
01011 = 1 => С
01011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(00111) = С
00000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
00111 = 1 => С
00111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(11110) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
11000 ⊕ С
10100 ⊕ С
10010 ⊕ С
01100 ⊕ С
01010 ⊕ С
00110 ⊕ С
11100 ⊕ С
11010 ⊕ С
10110 ⊕ С
01110 ⊕ С
11110 = 0 => С
11110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11101) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00001 ⊕ С
11000 ⊕ С
10100 ⊕ С
10001 ⊕ С
01100 ⊕ С
01001 ⊕ С
00101 ⊕ С
11100 ⊕ С
11001 ⊕ С
10101 ⊕ С
01101 ⊕ С
11101 = 0 => С
11101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(11011) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00010 ⊕ С
00001 ⊕ С
11000 ⊕ С
10010 ⊕ С
10001 ⊕ С
01010 ⊕ С
01001 ⊕ С
00011 ⊕ С
11010 ⊕ С
11001 ⊕ С
10011 ⊕ С
01011 ⊕ С
11011 = 0 => С
11011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
F
ж(10111) = С
00000 ⊕ С
10000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
10100 ⊕ С
10010 ⊕ С
10001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
10110 ⊕ С
10101 ⊕ С
10011 ⊕ С
00111 ⊕ С
10111 = 1 => С
10111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(01111) = С
00000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
01100 ⊕ С
01010 ⊕ С
01001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
01110 ⊕ С
01101 ⊕ С
01011 ⊕ С
00111 ⊕ С
01111 = 1 => С
01111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(11111) = С
00000 ⊕ С
10000 ⊕ С
01000 ⊕ С
00100 ⊕ С
00010 ⊕ С
00001 ⊕ С
11000 ⊕ С
10100 ⊕ С
10010 ⊕ С
10001 ⊕ С
01100 ⊕ С
01010 ⊕ С
01001 ⊕ С
00110 ⊕ С
00101 ⊕ С
00011 ⊕ С
11100 ⊕ С
11010 ⊕ С
11001 ⊕ С
10110 ⊕ С
10101 ⊕ С
10011 ⊕ С
01110 ⊕ С
01101 ⊕ С
01011 ⊕ С
00111 ⊕ С
11110 ⊕ С
11101 ⊕ С
11011 ⊕ С
10111 ⊕ С
01111 ⊕ С
11111 = 1 => С
11111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Таким образом, полином Жегалкина будет равен:
F
ж = 1 ⊕ A∧B ⊕ A∧B∧X∧O∧R
Логическая схема, соответствующая полиному Жегалкина: