Таблица истинности для функции (A∧B)→(¬B→¬A)∧X∧O∧R∧A:


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

¬B:
B¬B
01
10

¬A:
A¬A
01
10

(¬B)→(¬A):
BA¬B¬A(¬B)→(¬A)
00111
01100
10011
11001

((¬B)→(¬A))∧X:
BAX¬B¬A(¬B)→(¬A)((¬B)→(¬A))∧X
0001110
0011111
0101000
0111000
1000110
1010111
1100010
1110011

(((¬B)→(¬A))∧X)∧O:
BAXO¬B¬A(¬B)→(¬A)((¬B)→(¬A))∧X(((¬B)→(¬A))∧X)∧O
000011100
000111100
001011110
001111111
010010000
010110000
011010000
011110000
100001100
100101100
101001110
101101111
110000100
110100100
111000110
111100111

((((¬B)→(¬A))∧X)∧O)∧R:
BAXOR¬B¬A(¬B)→(¬A)((¬B)→(¬A))∧X(((¬B)→(¬A))∧X)∧O((((¬B)→(¬A))∧X)∧O)∧R
00000111000
00001111000
00010111000
00011111000
00100111100
00101111100
00110111110
00111111111
01000100000
01001100000
01010100000
01011100000
01100100000
01101100000
01110100000
01111100000
10000011000
10001011000
10010011000
10011011000
10100011100
10101011100
10110011110
10111011111
11000001000
11001001000
11010001000
11011001000
11100001100
11101001100
11110001110
11111001111

(((((¬B)→(¬A))∧X)∧O)∧R)∧A:
BAXOR¬B¬A(¬B)→(¬A)((¬B)→(¬A))∧X(((¬B)→(¬A))∧X)∧O((((¬B)→(¬A))∧X)∧O)∧R(((((¬B)→(¬A))∧X)∧O)∧R)∧A
000001110000
000011110000
000101110000
000111110000
001001111000
001011111000
001101111100
001111111110
010001000000
010011000000
010101000000
010111000000
011001000000
011011000000
011101000000
011111000000
100000110000
100010110000
100100110000
100110110000
101000111000
101010111000
101100111100
101110111110
110000010000
110010010000
110100010000
110110010000
111000011000
111010011000
111100011100
111110011111

(A∧B)→((((((¬B)→(¬A))∧X)∧O)∧R)∧A):
ABXORA∧B¬B¬A(¬B)→(¬A)((¬B)→(¬A))∧X(((¬B)→(¬A))∧X)∧O((((¬B)→(¬A))∧X)∧O)∧R(((((¬B)→(¬A))∧X)∧O)∧R)∧A(A∧B)→((((((¬B)→(¬A))∧X)∧O)∧R)∧A)
00000011100001
00001011100001
00010011100001
00011011100001
00100011110001
00101011110001
00110011111001
00111011111101
01000001100001
01001001100001
01010001100001
01011001100001
01100001110001
01101001110001
01110001111001
01111001111101
10000010000001
10001010000001
10010010000001
10011010000001
10100010000001
10101010000001
10110010000001
10111010000001
11000100100000
11001100100000
11010100100000
11011100100000
11100100110000
11101100110000
11110100111000
11111100111111

Общая таблица истинности:

ABXORA∧B¬B¬A(¬B)→(¬A)((¬B)→(¬A))∧X(((¬B)→(¬A))∧X)∧O((((¬B)→(¬A))∧X)∧O)∧R(((((¬B)→(¬A))∧X)∧O)∧R)∧A(A∧B)→(¬B→¬A)∧X∧O∧R∧A
00000011100001
00001011100001
00010011100001
00011011100001
00100011110001
00101011110001
00110011111001
00111011111101
01000001100001
01001001100001
01010001100001
01011001100001
01100001110001
01101001110001
01110001111001
01111001111101
10000010000001
10001010000001
10010010000001
10011010000001
10100010000001
10101010000001
10110010000001
10111010000001
11000100100000
11001100100000
11010100100000
11011100100000
11100100110000
11101100110000
11110100111000
11111100111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABXORF
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011001
011011
011101
011111
100001
100011
100101
100111
101001
101011
101101
101111
110000
110010
110100
110110
111000
111010
111100
111111
Fсднф = ¬A∧¬B∧¬X∧¬O∧¬R ∨ ¬A∧¬B∧¬X∧¬O∧R ∨ ¬A∧¬B∧¬X∧O∧¬R ∨ ¬A∧¬B∧¬X∧O∧R ∨ ¬A∧¬B∧X∧¬O∧¬R ∨ ¬A∧¬B∧X∧¬O∧R ∨ ¬A∧¬B∧X∧O∧¬R ∨ ¬A∧¬B∧X∧O∧R ∨ ¬A∧B∧¬X∧¬O∧¬R ∨ ¬A∧B∧¬X∧¬O∧R ∨ ¬A∧B∧¬X∧O∧¬R ∨ ¬A∧B∧¬X∧O∧R ∨ ¬A∧B∧X∧¬O∧¬R ∨ ¬A∧B∧X∧¬O∧R ∨ ¬A∧B∧X∧O∧¬R ∨ ¬A∧B∧X∧O∧R ∨ A∧¬B∧¬X∧¬O∧¬R ∨ A∧¬B∧¬X∧¬O∧R ∨ A∧¬B∧¬X∧O∧¬R ∨ A∧¬B∧¬X∧O∧R ∨ A∧¬B∧X∧¬O∧¬R ∨ A∧¬B∧X∧¬O∧R ∨ A∧¬B∧X∧O∧¬R ∨ A∧¬B∧X∧O∧R ∨ A∧B∧X∧O∧R
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABXORF
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011001
011011
011101
011111
100001
100011
100101
100111
101001
101011
101101
101111
110000
110010
110100
110110
111000
111010
111100
111111
Fскнф = (¬A∨¬B∨X∨O∨R) ∧ (¬A∨¬B∨X∨O∨¬R) ∧ (¬A∨¬B∨X∨¬O∨R) ∧ (¬A∨¬B∨X∨¬O∨¬R) ∧ (¬A∨¬B∨¬X∨O∨R) ∧ (¬A∨¬B∨¬X∨O∨¬R) ∧ (¬A∨¬B∨¬X∨¬O∨R)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABXORFж
000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010111
011001
011011
011101
011111
100001
100011
100101
100111
101001
101011
101101
101111
110000
110010
110100
110110
111000
111010
111100
111111

Построим полином Жегалкина:
Fж = C00000 ⊕ C10000∧A ⊕ C01000∧B ⊕ C00100∧X ⊕ C00010∧O ⊕ C00001∧R ⊕ C11000∧A∧B ⊕ C10100∧A∧X ⊕ C10010∧A∧O ⊕ C10001∧A∧R ⊕ C01100∧B∧X ⊕ C01010∧B∧O ⊕ C01001∧B∧R ⊕ C00110∧X∧O ⊕ C00101∧X∧R ⊕ C00011∧O∧R ⊕ C11100∧A∧B∧X ⊕ C11010∧A∧B∧O ⊕ C11001∧A∧B∧R ⊕ C10110∧A∧X∧O ⊕ C10101∧A∧X∧R ⊕ C10011∧A∧O∧R ⊕ C01110∧B∧X∧O ⊕ C01101∧B∧X∧R ⊕ C01011∧B∧O∧R ⊕ C00111∧X∧O∧R ⊕ C11110∧A∧B∧X∧O ⊕ C11101∧A∧B∧X∧R ⊕ C11011∧A∧B∧O∧R ⊕ C10111∧A∧X∧O∧R ⊕ C01111∧B∧X∧O∧R ⊕ C11111∧A∧B∧X∧O∧R

Так как Fж(00000) = 1, то С00000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10000) = С00000 ⊕ С10000 = 1 => С10000 = 1 ⊕ 1 = 0
Fж(01000) = С00000 ⊕ С01000 = 1 => С01000 = 1 ⊕ 1 = 0
Fж(00100) = С00000 ⊕ С00100 = 1 => С00100 = 1 ⊕ 1 = 0
Fж(00010) = С00000 ⊕ С00010 = 1 => С00010 = 1 ⊕ 1 = 0
Fж(00001) = С00000 ⊕ С00001 = 1 => С00001 = 1 ⊕ 1 = 0
Fж(11000) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С11000 = 0 => С11000 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(10100) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С10100 = 1 => С10100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10010) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С10010 = 1 => С10010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10001) = С00000 ⊕ С10000 ⊕ С00001 ⊕ С10001 = 1 => С10001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01100) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С01100 = 1 => С01100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01010) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С01010 = 1 => С01010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01001) = С00000 ⊕ С01000 ⊕ С00001 ⊕ С01001 = 1 => С01001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00110) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00110 = 1 => С00110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00101) = С00000 ⊕ С00100 ⊕ С00001 ⊕ С00101 = 1 => С00101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00011) = С00000 ⊕ С00010 ⊕ С00001 ⊕ С00011 = 1 => С00011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11100) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С11000 ⊕ С10100 ⊕ С01100 ⊕ С11100 = 0 => С11100 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11010) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С11000 ⊕ С10010 ⊕ С01010 ⊕ С11010 = 0 => С11010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11001) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00001 ⊕ С11000 ⊕ С10001 ⊕ С01001 ⊕ С11001 = 0 => С11001 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10110) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С10100 ⊕ С10010 ⊕ С00110 ⊕ С10110 = 1 => С10110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10101) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00001 ⊕ С10100 ⊕ С10001 ⊕ С00101 ⊕ С10101 = 1 => С10101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(10011) = С00000 ⊕ С10000 ⊕ С00010 ⊕ С00001 ⊕ С10010 ⊕ С10001 ⊕ С00011 ⊕ С10011 = 1 => С10011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01110) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С01110 = 1 => С01110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01101) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С01101 = 1 => С01101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01011) = С00000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С01011 = 1 => С01011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(00111) = С00000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С00111 = 1 => С00111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11110) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С01100 ⊕ С01010 ⊕ С00110 ⊕ С11100 ⊕ С11010 ⊕ С10110 ⊕ С01110 ⊕ С11110 = 0 => С11110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11101) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10001 ⊕ С01100 ⊕ С01001 ⊕ С00101 ⊕ С11100 ⊕ С11001 ⊕ С10101 ⊕ С01101 ⊕ С11101 = 0 => С11101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(11011) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10010 ⊕ С10001 ⊕ С01010 ⊕ С01001 ⊕ С00011 ⊕ С11010 ⊕ С11001 ⊕ С10011 ⊕ С01011 ⊕ С11011 = 0 => С11011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(10111) = С00000 ⊕ С10000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С00111 ⊕ С10111 = 1 => С10111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(01111) = С00000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С01111 = 1 => С01111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(11111) = С00000 ⊕ С10000 ⊕ С01000 ⊕ С00100 ⊕ С00010 ⊕ С00001 ⊕ С11000 ⊕ С10100 ⊕ С10010 ⊕ С10001 ⊕ С01100 ⊕ С01010 ⊕ С01001 ⊕ С00110 ⊕ С00101 ⊕ С00011 ⊕ С11100 ⊕ С11010 ⊕ С11001 ⊕ С10110 ⊕ С10101 ⊕ С10011 ⊕ С01110 ⊕ С01101 ⊕ С01011 ⊕ С00111 ⊕ С11110 ⊕ С11101 ⊕ С11011 ⊕ С10111 ⊕ С01111 ⊕ С11111 = 1 => С11111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A∧B ⊕ A∧B∧X∧O∧R
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы