Таблица истинности для функции ¬A∨B∧(A∨B):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

¬A:
A¬A
01
10

B∧(A∨B):
BAA∨BB∧(A∨B)
0000
0110
1011
1111

(¬A)∨(B∧(A∨B)):
AB¬AA∨BB∧(A∨B)(¬A)∨(B∧(A∨B))
001001
011111
100100
110111

Общая таблица истинности:

ABA∨B¬AB∧(A∨B)¬A∨B∧(A∨B)
000101
011111
101000
111011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
001
011
100
111
Fсднф = ¬A∧¬B ∨ ¬A∧B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
001
011
100
111
Fскнф = (¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
001
011
100
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 1 ⊕ 0 = 1
Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы