Таблица истинности для функции (A∨B)∧(¬A∧V∧¬C):


Промежуточные таблицы истинности:
A∨B:
ABA∨B
000
011
101
111

¬A:
A¬A
01
10

¬C:
C¬C
01
10

(¬A)∧V:
AV¬A(¬A)∧V
0010
0111
1000
1100

((¬A)∧V)∧(¬C):
AVC¬A(¬A)∧V¬C((¬A)∧V)∧(¬C)
0001010
0011000
0101111
0111100
1000010
1010000
1100010
1110000

(A∨B)∧(((¬A)∧V)∧(¬C)):
ABVCA∨B¬A(¬A)∧V¬C((¬A)∧V)∧(¬C)(A∨B)∧(((¬A)∧V)∧(¬C))
0000010100
0001010000
0010011110
0011011000
0100110100
0101110000
0110111111
0111111000
1000100100
1001100000
1010100100
1011100000
1100100100
1101100000
1110100100
1111100000

Общая таблица истинности:

ABVCA∨B¬A¬C(¬A)∧V((¬A)∧V)∧(¬C)(A∨B)∧(¬A∧V∧¬C)
0000011000
0001010000
0010011110
0011010100
0100111000
0101110000
0110111111
0111110100
1000101000
1001100000
1010101000
1011100000
1100101000
1101100000
1110101000
1111100000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABVCF
00000
00010
00100
00110
01000
01010
01101
01110
10000
10010
10100
10110
11000
11010
11100
11110
Fсднф = ¬A∧B∧V∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABVCF
00000
00010
00100
00110
01000
01010
01101
01110
10000
10010
10100
10110
11000
11010
11100
11110
Fскнф = (A∨B∨V∨C) ∧ (A∨B∨V∨¬C) ∧ (A∨B∨¬V∨C) ∧ (A∨B∨¬V∨¬C) ∧ (A∨¬B∨V∨C) ∧ (A∨¬B∨V∨¬C) ∧ (A∨¬B∨¬V∨¬C) ∧ (¬A∨B∨V∨C) ∧ (¬A∨B∨V∨¬C) ∧ (¬A∨B∨¬V∨C) ∧ (¬A∨B∨¬V∨¬C) ∧ (¬A∨¬B∨V∨C) ∧ (¬A∨¬B∨V∨¬C) ∧ (¬A∨¬B∨¬V∨C) ∧ (¬A∨¬B∨¬V∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABVCFж
00000
00010
00100
00110
01000
01010
01101
01110
10000
10010
10100
10110
11000
11010
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧V ⊕ C0001∧C ⊕ C1100∧A∧B ⊕ C1010∧A∧V ⊕ C1001∧A∧C ⊕ C0110∧B∧V ⊕ C0101∧B∧C ⊕ C0011∧V∧C ⊕ C1110∧A∧B∧V ⊕ C1101∧A∧B∧C ⊕ C1011∧A∧V∧C ⊕ C0111∧B∧V∧C ⊕ C1111∧A∧B∧V∧C

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 0 ⊕ 0 = 0
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 0 ⊕ 0 = 0
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = B∧V ⊕ A∧B∧V ⊕ B∧V∧C ⊕ A∧B∧V∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы