Таблица истинности для функции (¬A∧B∨C)∧¬(B∨A):


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

(¬A)∧B:
AB¬A(¬A)∧B
0010
0111
1000
1100

((¬A)∧B)∨C:
ABC¬A(¬A)∧B((¬A)∧B)∨C
000100
001101
010111
011111
100000
101001
110000
111001

B∨A:
BAB∨A
000
011
101
111

¬(B∨A):
BAB∨A¬(B∨A)
0001
0110
1010
1110

(((¬A)∧B)∨C)∧(¬(B∨A)):
ABC¬A(¬A)∧B((¬A)∧B)∨CB∨A¬(B∨A)(((¬A)∧B)∨C)∧(¬(B∨A))
000100010
001101011
010111100
011111100
100000100
101001100
110000100
111001100

Общая таблица истинности:

ABC¬A(¬A)∧B((¬A)∧B)∨CB∨A¬(B∨A)(¬A∧B∨C)∧¬(B∨A)
000100010
001101011
010111100
011111100
100000100
101001100
110000100
111001100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0011
0100
0110
1000
1010
1100
1110
Fсднф = ¬A∧¬B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0011
0100
0110
1000
1010
1100
1110
Fскнф = (A∨B∨C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0011
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = C ⊕ A∧C ⊕ B∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы