Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции F≡X∧Y∧(¬(Y∧X)):
Промежуточные таблицы истинности:Y∧X: ¬(Y∧X): Y | X | Y∧X | ¬(Y∧X) | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
X∧Y: (X∧Y)∧(¬(Y∧X)): X | Y | X∧Y | Y∧X | ¬(Y∧X) | (X∧Y)∧(¬(Y∧X)) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
F≡((X∧Y)∧(¬(Y∧X))): F | X | Y | X∧Y | Y∧X | ¬(Y∧X) | (X∧Y)∧(¬(Y∧X)) | F≡((X∧Y)∧(¬(Y∧X))) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Общая таблица истинности:F | X | Y | Y∧X | ¬(Y∧X) | X∧Y | (X∧Y)∧(¬(Y∧X)) | F≡X∧Y∧(¬(Y∧X)) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: F | X | Y | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F сднф = ¬F∧¬X∧¬Y ∨ ¬F∧¬X∧Y ∨ ¬F∧X∧¬Y ∨ ¬F∧X∧Y Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: F | X | Y | F | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
F скнф = (¬F∨X∨Y) ∧ (¬F∨X∨¬Y) ∧ (¬F∨¬X∨Y) ∧ (¬F∨¬X∨¬Y) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции F | X | Y | Fж | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧F ⊕ C 010∧X ⊕ C 001∧Y ⊕ C 110∧F∧X ⊕ C 101∧F∧Y ⊕ C 011∧X∧Y ⊕ C 111∧F∧X∧Y Так как F ж(000) = 1, то С 000 = 1. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 1 ⊕ 0 = 1 F ж(010) = С 000 ⊕ С 010 = 1 => С 010 = 1 ⊕ 1 = 0 F ж(001) = С 000 ⊕ С 001 = 1 => С 001 = 1 ⊕ 1 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 1 => С 011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 0 => С 111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 Таким образом, полином Жегалкина будет равен: F ж = 1 ⊕ F Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|