Таблица истинности для функции ¬(A∨¬(¬B∨C)):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

(¬B)∨C:
BC¬B(¬B)∨C
0011
0111
1000
1101

¬((¬B)∨C):
BC¬B(¬B)∨C¬((¬B)∨C)
00110
01110
10001
11010

A∨(¬((¬B)∨C)):
ABC¬B(¬B)∨C¬((¬B)∨C)A∨(¬((¬B)∨C))
0001100
0011100
0100011
0110100
1001101
1011101
1100011
1110101

¬(A∨(¬((¬B)∨C))):
ABC¬B(¬B)∨C¬((¬B)∨C)A∨(¬((¬B)∨C))¬(A∨(¬((¬B)∨C)))
00011001
00111001
01000110
01101001
10011010
10111010
11000110
11101010

Общая таблица истинности:

ABC¬B(¬B)∨C¬((¬B)∨C)A∨(¬((¬B)∨C))¬(A∨¬(¬B∨C))
00011001
00111001
01000110
01101001
10011010
10111010
11000110
11101010

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0011
0100
0111
1000
1010
1100
1110
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ ¬A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0011
0100
0111
1000
1010
1100
1110
Fскнф = (A∨¬B∨C) ∧ (¬A∨B∨C) ∧ (¬A∨B∨¬C) ∧ (¬A∨¬B∨C) ∧ (¬A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0011
0100
0111
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B ⊕ A∧B ⊕ B∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы