Таблица истинности для функции ((A∧D)∧(¬D))∨((B∧¬A)∧(A∧C)):


Общая таблица истинности:

ADBCA∧D¬D(A∧D)∧(¬D)¬AB∧(¬A)A∧C(B∧(¬A))∧(A∧C)((A∧D)∧(¬D))∨((B∧¬A)∧(A∧C))
000001010000
000101010000
001001011000
001101011000
010000010000
010100010000
011000011000
011100011000
100001000000
100101000100
101001000000
101101000100
110010000000
110110000100
111010000000
111110000100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ADBCF
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ADBCF
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110
Fскнф = (A∨D∨B∨C) ∧ (A∨D∨B∨¬C) ∧ (A∨D∨¬B∨C) ∧ (A∨D∨¬B∨¬C) ∧ (A∨¬D∨B∨C) ∧ (A∨¬D∨B∨¬C) ∧ (A∨¬D∨¬B∨C) ∧ (A∨¬D∨¬B∨¬C) ∧ (¬A∨D∨B∨C) ∧ (¬A∨D∨B∨¬C) ∧ (¬A∨D∨¬B∨C) ∧ (¬A∨D∨¬B∨¬C) ∧ (¬A∨¬D∨B∨C) ∧ (¬A∨¬D∨B∨¬C) ∧ (¬A∨¬D∨¬B∨C) ∧ (¬A∨¬D∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ADBCFж
00000
00010
00100
00110
01000
01010
01100
01110
10000
10010
10100
10110
11000
11010
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧D ⊕ C0010∧B ⊕ C0001∧C ⊕ C1100∧A∧D ⊕ C1010∧A∧B ⊕ C1001∧A∧C ⊕ C0110∧D∧B ⊕ C0101∧D∧C ⊕ C0011∧B∧C ⊕ C1110∧A∧D∧B ⊕ C1101∧A∧D∧C ⊕ C1011∧A∧B∧C ⊕ C0111∧D∧B∧C ⊕ C1111∧A∧D∧B∧C

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 0 ⊕ 0 = 0
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 0 ⊕ 0 = 0
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы