Таблица истинности для функции A∨(¬B∧¬A):


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

¬A:
A¬A
01
10

(¬B)∧(¬A):
BA¬B¬A(¬B)∧(¬A)
00111
01100
10010
11000

A∨((¬B)∧(¬A)):
AB¬B¬A(¬B)∧(¬A)A∨((¬B)∧(¬A))
001111
010100
101001
110001

Общая таблица истинности:

AB¬B¬A(¬B)∧(¬A)A∨(¬B∧¬A)
001111
010100
101001
110001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
001
010
101
111
Fсднф = ¬A∧¬B ∨ A∧¬B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
001
010
101
111
Fскнф = (A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
001
010
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 1 ⊕ 1 = 0
Fж(01) = С00 ⊕ С01 = 0 => С01 = 1 ⊕ 0 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы