Таблица истинности для функции (¬X1∨¬X2)∧X3:


Промежуточные таблицы истинности:
¬X1:
X1¬X1
01
10

¬X2:
X2¬X2
01
10

(¬X1)∨(¬X2):
X1X2¬X1¬X2(¬X1)∨(¬X2)
00111
01101
10011
11000

((¬X1)∨(¬X2))∧X3:
X1X2X3¬X1¬X2(¬X1)∨(¬X2)((¬X1)∨(¬X2))∧X3
0001110
0011111
0101010
0111011
1000110
1010111
1100000
1110000

Общая таблица истинности:

X1X2X3¬X1¬X2(¬X1)∨(¬X2)(¬X1∨¬X2)∧X3
0001110
0011111
0101010
0111011
1000110
1010111
1100000
1110000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
X1X2X3F
0000
0011
0100
0111
1000
1011
1100
1110
Fсднф = ¬X1∧¬X2∧X3 ∨ ¬X1∧X2∧X3 ∨ X1∧¬X2∧X3
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
X1X2X3F
0000
0011
0100
0111
1000
1011
1100
1110
Fскнф = (X1∨X2∨X3) ∧ (X1∨¬X2∨X3) ∧ (¬X1∨X2∨X3) ∧ (¬X1∨¬X2∨X3) ∧ (¬X1∨¬X2∨¬X3)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
X1X2X3Fж
0000
0011
0100
0111
1000
1011
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X1 ⊕ C010∧X2 ⊕ C001∧X3 ⊕ C110∧X1∧X2 ⊕ C101∧X1∧X3 ⊕ C011∧X2∧X3 ⊕ C111∧X1∧X2∧X3

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 0 ⊕ 1 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X3 ⊕ X1∧X2∧X3
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы