Таблица истинности для функции (¬B∧C∨¬A)∨A:
Промежуточные таблицы истинности:
¬B:
¬A:
(¬B)∧C:
((¬B)∧C)∨(¬A):
(((¬B)∧C)∨(¬A))∨A:
Общая таблица истинности:
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:Fсднф = ¬B∧¬C∧¬A ∨ ¬B∧¬C∧A ∨ ¬B∧C∧¬A ∨ ¬B∧C∧A ∨ B∧¬C∧¬A ∨ B∧¬C∧A ∨ B∧C∧¬A ∨ B∧C∧A
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:В таблице истинности нет набора значений переменных при которых функция ложна!
Построение полинома Жегалкина:
По таблице истинности функцииПостроим полином Жегалкина:
Fж = C000 ⊕ C100∧B ⊕ C010∧C ⊕ C001∧A ⊕ C110∧B∧C ⊕ C101∧B∧A ⊕ C011∧C∧A ⊕ C111∧B∧C∧A
Так как Fж(000) = 1, то С000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Таким образом, полином Жегалкина будет равен:
Fж = 1