Таблица истинности для функции P→((Q→(P∧Q))):


Промежуточные таблицы истинности:
P∧Q:
PQP∧Q
000
010
100
111

Q→(P∧Q):
QPP∧QQ→(P∧Q)
0001
0101
1000
1111

P→(Q→(P∧Q)):
PQP∧QQ→(P∧Q)P→(Q→(P∧Q))
00011
01001
10011
11111

Общая таблица истинности:

PQP∧QQ→(P∧Q)P→((Q→(P∧Q)))
00011
01001
10011
11111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
PQF
001
011
101
111
Fсднф = ¬P∧¬Q ∨ ¬P∧Q ∨ P∧¬Q ∨ P∧Q
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
PQF
001
011
101
111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
PQFж
001
011
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧P ⊕ C01∧Q ⊕ C11∧P∧Q

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 1 ⊕ 1 = 0
Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы