Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (X→Y)∧(¬Y≡Z)∧W:
Промежуточные таблицы истинности:X→Y: ¬Y: (¬Y)≡Z: Y | Z | ¬Y | (¬Y)≡Z | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
(X→Y)∧((¬Y)≡Z): X | Y | Z | X→Y | ¬Y | (¬Y)≡Z | (X→Y)∧((¬Y)≡Z) | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
((X→Y)∧((¬Y)≡Z))∧W: X | Y | Z | W | X→Y | ¬Y | (¬Y)≡Z | (X→Y)∧((¬Y)≡Z) | ((X→Y)∧((¬Y)≡Z))∧W | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Общая таблица истинности:X | Y | Z | W | X→Y | ¬Y | (¬Y)≡Z | (X→Y)∧((¬Y)≡Z) | (X→Y)∧(¬Y≡Z)∧W | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X | Y | Z | W | F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
F сднф = ¬X∧¬Y∧Z∧W ∨ ¬X∧Y∧¬Z∧W ∨ X∧Y∧¬Z∧W Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X | Y | Z | W | F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
F скнф = (X∨Y∨Z∨W) ∧ (X∨Y∨Z∨¬W) ∧ (X∨Y∨¬Z∨W) ∧ (X∨¬Y∨Z∨W) ∧ (X∨¬Y∨¬Z∨W) ∧ (X∨¬Y∨¬Z∨¬W) ∧ (¬X∨Y∨Z∨W) ∧ (¬X∨Y∨Z∨¬W) ∧ (¬X∨Y∨¬Z∨W) ∧ (¬X∨Y∨¬Z∨¬W) ∧ (¬X∨¬Y∨Z∨W) ∧ (¬X∨¬Y∨¬Z∨W) ∧ (¬X∨¬Y∨¬Z∨¬W) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X | Y | Z | W | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина: F ж = C 0000 ⊕ C 1000∧X ⊕ C 0100∧Y ⊕ C 0010∧Z ⊕ C 0001∧W ⊕ C 1100∧X∧Y ⊕ C 1010∧X∧Z ⊕ C 1001∧X∧W ⊕ C 0110∧Y∧Z ⊕ C 0101∧Y∧W ⊕ C 0011∧Z∧W ⊕ C 1110∧X∧Y∧Z ⊕ C 1101∧X∧Y∧W ⊕ C 1011∧X∧Z∧W ⊕ C 0111∧Y∧Z∧W ⊕ C 1111∧X∧Y∧Z∧W Так как F ж(0000) = 0, то С 0000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(1000) = С 0000 ⊕ С 1000 = 0 => С 1000 = 0 ⊕ 0 = 0 F ж(0100) = С 0000 ⊕ С 0100 = 0 => С 0100 = 0 ⊕ 0 = 0 F ж(0010) = С 0000 ⊕ С 0010 = 0 => С 0010 = 0 ⊕ 0 = 0 F ж(0001) = С 0000 ⊕ С 0001 = 0 => С 0001 = 0 ⊕ 0 = 0 F ж(1100) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 1100 = 0 => С 1100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(1010) = С 0000 ⊕ С 1000 ⊕ С 0010 ⊕ С 1010 = 0 => С 1010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(1001) = С 0000 ⊕ С 1000 ⊕ С 0001 ⊕ С 1001 = 0 => С 1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(0110) = С 0000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0110 = 0 => С 0110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(0101) = С 0000 ⊕ С 0100 ⊕ С 0001 ⊕ С 0101 = 1 => С 0101 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 F ж(0011) = С 0000 ⊕ С 0010 ⊕ С 0001 ⊕ С 0011 = 1 => С 0011 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 F ж(1110) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0010 ⊕ С 1100 ⊕ С 1010 ⊕ С 0110 ⊕ С 1110 = 0 => С 1110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(1101) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0001 ⊕ С 1100 ⊕ С 1001 ⊕ С 0101 ⊕ С 1101 = 1 => С 1101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0 F ж(1011) = С 0000 ⊕ С 1000 ⊕ С 0010 ⊕ С 0001 ⊕ С 1010 ⊕ С 1001 ⊕ С 0011 ⊕ С 1011 = 0 => С 1011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1 F ж(0111) = С 0000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0001 ⊕ С 0110 ⊕ С 0101 ⊕ С 0011 ⊕ С 0111 = 0 => С 0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0 F ж(1111) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0001 ⊕ С 1100 ⊕ С 1010 ⊕ С 1001 ⊕ С 0110 ⊕ С 0101 ⊕ С 0011 ⊕ С 1110 ⊕ С 1101 ⊕ С 1011 ⊕ С 0111 ⊕ С 1111 = 0 => С 1111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1 Таким образом, полином Жегалкина будет равен: F ж = Y∧W ⊕ Z∧W ⊕ X∧Z∧W ⊕ X∧Y∧Z∧W Логическая схема, соответствующая полиному Жегалкина:
|
|
|
|
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|