Таблица истинности для функции A∨C∧(¬C∧B):


Промежуточные таблицы истинности:
¬C:
C¬C
01
10

(¬C)∧B:
CB¬C(¬C)∧B
0010
0111
1000
1100

C∧((¬C)∧B):
CB¬C(¬C)∧BC∧((¬C)∧B)
00100
01110
10000
11000

A∨(C∧((¬C)∧B)):
ACB¬C(¬C)∧BC∧((¬C)∧B)A∨(C∧((¬C)∧B))
0001000
0011100
0100000
0110000
1001001
1011101
1100001
1110001

Общая таблица истинности:

ACB¬C(¬C)∧BC∧((¬C)∧B)A∨C∧(¬C∧B)
0001000
0011100
0100000
0110000
1001001
1011101
1100001
1110001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ACBF
0000
0010
0100
0110
1001
1011
1101
1111
Fсднф = A∧¬C∧¬B ∨ A∧¬C∧B ∨ A∧C∧¬B ∨ A∧C∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ACBF
0000
0010
0100
0110
1001
1011
1101
1111
Fскнф = (A∨C∨B) ∧ (A∨C∨¬B) ∧ (A∨¬C∨B) ∧ (A∨¬C∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ACBFж
0000
0010
0100
0110
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧C ⊕ C001∧B ⊕ C110∧A∧C ⊕ C101∧A∧B ⊕ C011∧C∧B ⊕ C111∧A∧C∧B

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы