Таблица истинности для функции ¬(A∧B)∧(A∧V∧B):


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

A∧V:
AVA∧V
000
010
100
111

(A∧V)∧B:
AVBA∧V(A∧V)∧B
00000
00100
01000
01100
10000
10100
11010
11111

¬(A∧B):
ABA∧B¬(A∧B)
0001
0101
1001
1110

(¬(A∧B))∧((A∧V)∧B):
ABVA∧B¬(A∧B)A∧V(A∧V)∧B(¬(A∧B))∧((A∧V)∧B)
00001000
00101000
01001000
01101000
10001000
10101100
11010000
11110110

Общая таблица истинности:

ABVA∧BA∧V(A∧V)∧B¬(A∧B)¬(A∧B)∧(A∧V∧B)
00000010
00100010
01000010
01100010
10000010
10101010
11010000
11111100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABVF
0000
0010
0100
0110
1000
1010
1100
1110
В таблице истинности нет набора значений переменных при которых функция истинна!

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABVF
0000
0010
0100
0110
1000
1010
1100
1110
Fскнф = (A∨B∨V) ∧ (A∨B∨¬V) ∧ (A∨¬B∨V) ∧ (A∨¬B∨¬V) ∧ (¬A∨B∨V) ∧ (¬A∨B∨¬V) ∧ (¬A∨¬B∨V) ∧ (¬A∨¬B∨¬V)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABVFж
0000
0010
0100
0110
1000
1010
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧V ⊕ C110∧A∧B ⊕ C101∧A∧V ⊕ C011∧B∧V ⊕ C111∧A∧B∧V

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 0

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы