|
|
Автор: Gary D.Knott
Год: [не указано]
Издание:
[не указанo]
Страниц: [не указано]
ISBN: 0817641009
Spline functions arise in a number of fields: statistics, computer graphics, programming, computer-aided design technology, numerical analysis, and other areas of applied mathematics. Much work has focused on approximating splines such as B-splines and Bezier splines. In contrast, this book emphasizes interpolating splines. Almost always, the cubic polynomial form is treated in depth. {\it Interpolating Cubic Splines} covers a wide variety of explicit approaches to designing splines for the interpolation of points in the plane by curves, and the interpolation of points in 3-space by surfaces. These splines include various estimated-tangent Hermite splines and double-tangent splines, as well as classical natural splines and geometrically-continuous splines such as beta-splines and nu-splines. A variety of special topics are covered, including monotonic splines, optimal smoothing splines, basis representations, and exact energy-minimizing physical splines. An in-depth review...
|
|