Таблица истинности для функции A∨B∨(¬A∨B)∧A:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

(¬A)∨B:
AB¬A(¬A)∨B
0011
0111
1000
1101

((¬A)∨B)∧A:
AB¬A(¬A)∨B((¬A)∨B)∧A
00110
01110
10000
11011

A∨B:
ABA∨B
000
011
101
111

(A∨B)∨(((¬A)∨B)∧A):
ABA∨B¬A(¬A)∨B((¬A)∨B)∧A(A∨B)∨(((¬A)∨B)∧A)
0001100
0111101
1010001
1110111

Общая таблица истинности:

AB¬A(¬A)∨B((¬A)∨B)∧AA∨BA∨B∨(¬A∨B)∧A
0011000
0111011
1000011
1101111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
000
011
101
111
Fсднф = ¬A∧B ∨ A∧¬B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
000
011
101
111
Fскнф = (A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
000
011
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 0, то С00 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 0 ⊕ 1 = 1
Fж(01) = С00 ⊕ С01 = 1 => С01 = 0 ⊕ 1 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = A ⊕ B ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы