Таблица истинности для функции (X∧¬Z)∨(X∧Y)∨(Y∧Z):


Промежуточные таблицы истинности:
¬Z:
Z¬Z
01
10

X∧(¬Z):
XZ¬ZX∧(¬Z)
0010
0100
1011
1100

X∧Y:
XYX∧Y
000
010
100
111

Y∧Z:
YZY∧Z
000
010
100
111

(X∧(¬Z))∨(X∧Y):
XZY¬ZX∧(¬Z)X∧Y(X∧(¬Z))∨(X∧Y)
0001000
0011000
0100000
0110000
1001101
1011111
1100000
1110011

((X∧(¬Z))∨(X∧Y))∨(Y∧Z):
XZY¬ZX∧(¬Z)X∧Y(X∧(¬Z))∨(X∧Y)Y∧Z((X∧(¬Z))∨(X∧Y))∨(Y∧Z)
000100000
001100000
010000000
011000011
100110101
101111101
110000000
111001111

Общая таблица истинности:

XZY¬ZX∧(¬Z)X∧YY∧Z(X∧(¬Z))∨(X∧Y)(X∧¬Z)∨(X∧Y)∨(Y∧Z)
000100000
001100000
010000000
011000101
100110011
101111011
110000000
111001111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XZYF
0000
0010
0100
0111
1001
1011
1100
1111
Fсднф = ¬X∧Z∧Y ∨ X∧¬Z∧¬Y ∨ X∧¬Z∧Y ∨ X∧Z∧Y
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XZYF
0000
0010
0100
0111
1001
1011
1100
1111
Fскнф = (X∨Z∨Y) ∧ (X∨Z∨¬Y) ∧ (X∨¬Z∨Y) ∧ (¬X∨¬Z∨Y)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XZYFж
0000
0010
0100
0111
1001
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Z ⊕ C001∧Y ⊕ C110∧X∧Z ⊕ C101∧X∧Y ⊕ C011∧Z∧Y ⊕ C111∧X∧Z∧Y

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ X∧Z ⊕ Z∧Y
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы