Таблица истинности для функции ¬A∧¬B∨¬C∨B∧C:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

¬B:
B¬B
01
10

¬C:
C¬C
01
10

(¬A)∧(¬B):
AB¬A¬B(¬A)∧(¬B)
00111
01100
10010
11000

B∧C:
BCB∧C
000
010
100
111

((¬A)∧(¬B))∨(¬C):
ABC¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∨(¬C)
00011111
00111101
01010011
01110000
10001011
10101000
11000011
11100000

(((¬A)∧(¬B))∨(¬C))∨(B∧C):
ABC¬A¬B(¬A)∧(¬B)¬C((¬A)∧(¬B))∨(¬C)B∧C(((¬A)∧(¬B))∨(¬C))∨(B∧C)
0001111101
0011110101
0101001101
0111000011
1000101101
1010100000
1100001101
1110000011

Общая таблица истинности:

ABC¬A¬B¬C(¬A)∧(¬B)B∧C((¬A)∧(¬B))∨(¬C)¬A∧¬B∨¬C∨B∧C
0001111011
0011101011
0101010011
0111000101
1000110011
1010100000
1100010011
1110000101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0011
0101
0111
1001
1010
1101
1111
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ ¬A∧B∧¬C ∨ ¬A∧B∧C ∨ A∧¬B∧¬C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0011
0101
0111
1001
1010
1101
1111
Fскнф = (¬A∨B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0011
0101
0111
1001
1010
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A∧C ⊕ A∧B∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2025, Список Литературы