Таблица истинности для функции A∨A∧B∧(A∨C):


Промежуточные таблицы истинности:
A∨C:
ACA∨C
000
011
101
111

A∧B:
ABA∧B
000
010
100
111

(A∧B)∧(A∨C):
ABCA∧BA∨C(A∧B)∧(A∨C)
000000
001010
010000
011010
100010
101010
110111
111111

A∨((A∧B)∧(A∨C)):
ABCA∧BA∨C(A∧B)∧(A∨C)A∨((A∧B)∧(A∨C))
0000000
0010100
0100000
0110100
1000101
1010101
1101111
1111111

Общая таблица истинности:

ABCA∨CA∧B(A∧B)∧(A∨C)A∨A∧B∧(A∨C)
0000000
0011000
0100000
0111000
1001001
1011001
1101111
1111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0000
0010
0100
0110
1001
1011
1101
1111
Fсднф = A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0000
0010
0100
0110
1001
1011
1101
1111
Fскнф = (A∨B∨C) ∧ (A∨B∨¬C) ∧ (A∨¬B∨C) ∧ (A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0000
0010
0100
0110
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = A
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2024, Список Литературы