Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции F∧(X∧Y)≡(¬X∧¬Y)∨(¬X∧Y)∨(X∧¬Y)∨(X∧Y):
Промежуточные таблицы истинности:X∧Y: ¬X: ¬Y: (¬X)∧(¬Y): X | Y | ¬X | ¬Y | (¬X)∧(¬Y) | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
(¬X)∧Y: X | Y | ¬X | (¬X)∧Y | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
X∧(¬Y): X | Y | ¬Y | X∧(¬Y) | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
F∧(X∧Y): F | X | Y | X∧Y | F∧(X∧Y) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
((¬X)∧(¬Y))∨((¬X)∧Y): X | Y | ¬X | ¬Y | (¬X)∧(¬Y) | ¬X | (¬X)∧Y | ((¬X)∧(¬Y))∨((¬X)∧Y) | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
(((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)): X | Y | ¬X | ¬Y | (¬X)∧(¬Y) | ¬X | (¬X)∧Y | ((¬X)∧(¬Y))∨((¬X)∧Y) | ¬Y | X∧(¬Y) | (((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)) | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
((((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)))∨(X∧Y): X | Y | ¬X | ¬Y | (¬X)∧(¬Y) | ¬X | (¬X)∧Y | ((¬X)∧(¬Y))∨((¬X)∧Y) | ¬Y | X∧(¬Y) | (((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)) | X∧Y | ((((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)))∨(X∧Y) | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
(F∧(X∧Y))≡(((((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)))∨(X∧Y)): F | X | Y | X∧Y | F∧(X∧Y) | ¬X | ¬Y | (¬X)∧(¬Y) | ¬X | (¬X)∧Y | ((¬X)∧(¬Y))∨((¬X)∧Y) | ¬Y | X∧(¬Y) | (((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)) | X∧Y | ((((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)))∨(X∧Y) | (F∧(X∧Y))≡(((((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)))∨(X∧Y)) | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
Общая таблица истинности:F | X | Y | X∧Y | ¬X | ¬Y | (¬X)∧(¬Y) | (¬X)∧Y | X∧(¬Y) | F∧(X∧Y) | ((¬X)∧(¬Y))∨((¬X)∧Y) | (((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)) | ((((¬X)∧(¬Y))∨((¬X)∧Y))∨(X∧(¬Y)))∨(X∧Y) | F∧(X∧Y)≡(¬X∧¬Y)∨(¬X∧Y)∨(X∧¬Y)∨(X∧Y) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: F | X | Y | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
F сднф = F∧X∧Y Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: F | X | Y | F | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
F скнф = (F∨X∨Y) ∧ (F∨X∨¬Y) ∧ (F∨¬X∨Y) ∧ (F∨¬X∨¬Y) ∧ (¬F∨X∨Y) ∧ (¬F∨X∨¬Y) ∧ (¬F∨¬X∨Y) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции F | X | Y | Fж | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Построим полином Жегалкина: F ж = C 000 ⊕ C 100∧F ⊕ C 010∧X ⊕ C 001∧Y ⊕ C 110∧F∧X ⊕ C 101∧F∧Y ⊕ C 011∧X∧Y ⊕ C 111∧F∧X∧Y Так как F ж(000) = 0, то С 000 = 0. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(100) = С 000 ⊕ С 100 = 0 => С 100 = 0 ⊕ 0 = 0 F ж(010) = С 000 ⊕ С 010 = 0 => С 010 = 0 ⊕ 0 = 0 F ж(001) = С 000 ⊕ С 001 = 0 => С 001 = 0 ⊕ 0 = 0 F ж(110) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 110 = 0 => С 110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(101) = С 000 ⊕ С 100 ⊕ С 001 ⊕ С 101 = 0 => С 101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(011) = С 000 ⊕ С 010 ⊕ С 001 ⊕ С 011 = 0 => С 011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0 F ж(111) = С 000 ⊕ С 100 ⊕ С 010 ⊕ С 001 ⊕ С 110 ⊕ С 101 ⊕ С 011 ⊕ С 111 = 1 => С 111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1 Таким образом, полином Жегалкина будет равен: F ж = F∧X∧Y Логическая схема, соответствующая полиному Жегалкина:
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|