Таблица истинности для функции (¬X1∨¬X2∨X3)∧(¬X1∨X2∨X3)∧(X1∨¬X2∨¬X3):


Промежуточные таблицы истинности:
¬X1:
X1¬X1
01
10

¬X2:
X2¬X2
01
10

(¬X1)∨(¬X2):
X1X2¬X1¬X2(¬X1)∨(¬X2)
00111
01101
10011
11000

((¬X1)∨(¬X2))∨X3:
X1X2X3¬X1¬X2(¬X1)∨(¬X2)((¬X1)∨(¬X2))∨X3
0001111
0011111
0101011
0111011
1000111
1010111
1100000
1110001

(¬X1)∨X2:
X1X2¬X1(¬X1)∨X2
0011
0111
1000
1101

((¬X1)∨X2)∨X3:
X1X2X3¬X1(¬X1)∨X2((¬X1)∨X2)∨X3
000111
001111
010111
011111
100000
101001
110011
111011

¬X3:
X3¬X3
01
10

X1∨(¬X2):
X1X2¬X2X1∨(¬X2)
0011
0100
1011
1101

(X1∨(¬X2))∨(¬X3):
X1X2X3¬X2X1∨(¬X2)¬X3(X1∨(¬X2))∨(¬X3)
0001111
0011101
0100011
0110000
1001111
1011101
1100111
1110101

(((¬X1)∨(¬X2))∨X3)∧(((¬X1)∨X2)∨X3):
X1X2X3¬X1¬X2(¬X1)∨(¬X2)((¬X1)∨(¬X2))∨X3¬X1(¬X1)∨X2((¬X1)∨X2)∨X3(((¬X1)∨(¬X2))∨X3)∧(((¬X1)∨X2)∨X3)
00011111111
00111111111
01010111111
01110111111
10001110000
10101110011
11000000110
11100010111

((((¬X1)∨(¬X2))∨X3)∧(((¬X1)∨X2)∨X3))∧((X1∨(¬X2))∨(¬X3)):
X1X2X3¬X1¬X2(¬X1)∨(¬X2)((¬X1)∨(¬X2))∨X3¬X1(¬X1)∨X2((¬X1)∨X2)∨X3(((¬X1)∨(¬X2))∨X3)∧(((¬X1)∨X2)∨X3)¬X2X1∨(¬X2)¬X3(X1∨(¬X2))∨(¬X3)((((¬X1)∨(¬X2))∨X3)∧(((¬X1)∨X2)∨X3))∧((X1∨(¬X2))∨(¬X3))
0001111111111111
0011111111111011
0101011111100111
0111011111100000
1000111000011110
1010111001111011
1100000011001110
1110001011101011

Общая таблица истинности:

X1X2X3¬X1¬X2(¬X1)∨(¬X2)((¬X1)∨(¬X2))∨X3(¬X1)∨X2((¬X1)∨X2)∨X3¬X3X1∨(¬X2)(X1∨(¬X2))∨(¬X3)(((¬X1)∨(¬X2))∨X3)∧(((¬X1)∨X2)∨X3)(¬X1∨¬X2∨X3)∧(¬X1∨X2∨X3)∧(X1∨¬X2∨¬X3)
00011111111111
00111111101111
01010111110111
01110111100010
10001110011100
10101110101111
11000001111100
11100011101111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
X1X2X3F
0001
0011
0101
0110
1000
1011
1100
1111
Fсднф = ¬X1∧¬X2∧¬X3 ∨ ¬X1∧¬X2∧X3 ∨ ¬X1∧X2∧¬X3 ∨ X1∧¬X2∧X3 ∨ X1∧X2∧X3
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
X1X2X3F
0001
0011
0101
0110
1000
1011
1100
1111
Fскнф = (X1∨¬X2∨¬X3) ∧ (¬X1∨X2∨X3) ∧ (¬X1∨¬X2∨X3)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
X1X2X3Fж
0001
0011
0101
0110
1000
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X1 ⊕ C010∧X2 ⊕ C001∧X3 ⊕ C110∧X1∧X2 ⊕ C101∧X1∧X3 ⊕ C011∧X2∧X3 ⊕ C111∧X1∧X2∧X3

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X1 ⊕ X1∧X3 ⊕ X2∧X3 ⊕ X1∧X2∧X3
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы