Таблица истинности для функции ¬(B≡¬A)→¬C∨¬A:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

B≡(¬A):
BA¬AB≡(¬A)
0010
0101
1011
1100

¬(B≡(¬A)):
BA¬AB≡(¬A)¬(B≡(¬A))
00101
01010
10110
11001

¬C:
C¬C
01
10

(¬C)∨(¬A):
CA¬C¬A(¬C)∨(¬A)
00111
01101
10011
11000

(¬(B≡(¬A)))→((¬C)∨(¬A)):
BAC¬AB≡(¬A)¬(B≡(¬A))¬C¬A(¬C)∨(¬A)(¬(B≡(¬A)))→((¬C)∨(¬A))
0001011111
0011010111
0100101011
0110100001
1001101111
1011100111
1100011011
1110010000

Общая таблица истинности:

BAC¬AB≡(¬A)¬(B≡(¬A))¬C(¬C)∨(¬A)¬(B≡¬A)→¬C∨¬A
000101111
001101011
010010111
011010001
100110111
101110011
110001111
111001000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
BACF
0001
0011
0101
0111
1001
1011
1101
1110
Fсднф = ¬B∧¬A∧¬C ∨ ¬B∧¬A∧C ∨ ¬B∧A∧¬C ∨ ¬B∧A∧C ∨ B∧¬A∧¬C ∨ B∧¬A∧C ∨ B∧A∧¬C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
BACF
0001
0011
0101
0111
1001
1011
1101
1110
Fскнф = (¬B∨¬A∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
BACFж
0001
0011
0101
0111
1001
1011
1101
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧B ⊕ C010∧A ⊕ C001∧C ⊕ C110∧B∧A ⊕ C101∧B∧C ⊕ C011∧A∧C ⊕ C111∧B∧A∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B∧A∧C
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2023, Список Литературы