Таблица истинности для функции ¬(¬A∧B)∨A∧¬B∧¬C:


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

(¬A)∧B:
AB¬A(¬A)∧B
0010
0111
1000
1100

¬((¬A)∧B):
AB¬A(¬A)∧B¬((¬A)∧B)
00101
01110
10001
11001

¬B:
B¬B
01
10

¬C:
C¬C
01
10

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

(A∧(¬B))∧(¬C):
ABC¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)
0001010
0011000
0100010
0110000
1001111
1011100
1100010
1110000

(¬((¬A)∧B))∨((A∧(¬B))∧(¬C)):
ABC¬A(¬A)∧B¬((¬A)∧B)¬BA∧(¬B)¬C(A∧(¬B))∧(¬C)(¬((¬A)∧B))∨((A∧(¬B))∧(¬C))
00010110101
00110110001
01011000100
01111000000
10000111111
10100111001
11000100101
11100100001

Общая таблица истинности:

ABC¬A(¬A)∧B¬((¬A)∧B)¬B¬CA∧(¬B)(A∧(¬B))∧(¬C)¬(¬A∧B)∨A∧¬B∧¬C
00010111001
00110110001
01011001000
01111000000
10000111111
10100110101
11000101001
11100100001

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCF
0001
0011
0100
0110
1001
1011
1101
1111
Fсднф = ¬A∧¬B∧¬C ∨ ¬A∧¬B∧C ∨ A∧¬B∧¬C ∨ A∧¬B∧C ∨ A∧B∧¬C ∨ A∧B∧C
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCF
0001
0011
0100
0110
1001
1011
1101
1111
Fскнф = (A∨¬B∨C) ∧ (A∨¬B∨¬C)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCFж
0001
0011
0100
0110
1001
1011
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧A ⊕ C010∧B ⊕ C001∧C ⊕ C110∧A∧B ⊕ C101∧A∧C ⊕ C011∧B∧C ⊕ C111∧A∧B∧C

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ A∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы