Таблица истинности для функции (A→B)≡(B→A):


Промежуточные таблицы истинности:
A→B:
ABA→B
001
011
100
111

B→A:
BAB→A
001
011
100
111

(A→B)≡(B→A):
ABA→BB→A(A→B)≡(B→A)
00111
01100
10010
11111

Общая таблица истинности:

ABA→BB→A(A→B)≡(B→A)
00111
01100
10010
11111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
001
010
100
111
Fсднф = ¬A∧¬B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
001
010
100
111
Fскнф = (A∨¬B) ∧ (¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
001
010
100
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 1 ⊕ 0 = 1
Fж(01) = С00 ⊕ С01 = 0 => С01 = 1 ⊕ 0 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B
Логическая схема, соответствующая полиному Жегалкина:

Наши друзья

Качественное решение задач курсовых работ, РГЗ по техническим предметам.
botaniks.ru

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы