Таблица истинности для функции X→(Z⊕¬Y):


Промежуточные таблицы истинности:
¬Y:
Y¬Y
01
10

Z⊕(¬Y):
ZY¬YZ⊕(¬Y)
0011
0100
1010
1101

X→(Z⊕(¬Y)):
XZY¬YZ⊕(¬Y)X→(Z⊕(¬Y))
000111
001001
010101
011011
100111
101000
110100
111011

Общая таблица истинности:

XZY¬YZ⊕(¬Y)X→(Z⊕¬Y)
000111
001001
010101
011011
100111
101000
110100
111011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XZYF
0001
0011
0101
0111
1001
1010
1100
1111
Fсднф = ¬X∧¬Z∧¬Y ∨ ¬X∧¬Z∧Y ∨ ¬X∧Z∧¬Y ∨ ¬X∧Z∧Y ∨ X∧¬Z∧¬Y ∨ X∧Z∧Y
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XZYF
0001
0011
0101
0111
1001
1010
1100
1111
Fскнф = (¬X∨Z∨¬Y) ∧ (¬X∨¬Z∨Y)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XZYFж
0001
0011
0101
0111
1001
1010
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Z ⊕ C001∧Y ⊕ C110∧X∧Z ⊕ C101∧X∧Y ⊕ C011∧Z∧Y ⊕ C111∧X∧Z∧Y

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X∧Z ⊕ X∧Y
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы