Таблица истинности для функции A∨C∨D∨¬B:


Промежуточные таблицы истинности:
¬B:
B¬B
01
10

A∨C:
ACA∨C
000
011
101
111

(A∨C)∨D:
ACDA∨C(A∨C)∨D
00000
00101
01011
01111
10011
10111
11011
11111

((A∨C)∨D)∨(¬B):
ACDBA∨C(A∨C)∨D¬B((A∨C)∨D)∨(¬B)
00000011
00010000
00100111
00110101
01001111
01011101
01101111
01111101
10001111
10011101
10101111
10111101
11001111
11011101
11101111
11111101

Общая таблица истинности:

ACDB¬BA∨C(A∨C)∨DA∨C∨D∨¬B
00001001
00010000
00101011
00110011
01001111
01010111
01101111
01110111
10001111
10010111
10101111
10110111
11001111
11010111
11101111
11110111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ACDBF
00001
00010
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111
Fсднф = ¬A∧¬C∧¬D∧¬B ∨ ¬A∧¬C∧D∧¬B ∨ ¬A∧¬C∧D∧B ∨ ¬A∧C∧¬D∧¬B ∨ ¬A∧C∧¬D∧B ∨ ¬A∧C∧D∧¬B ∨ ¬A∧C∧D∧B ∨ A∧¬C∧¬D∧¬B ∨ A∧¬C∧¬D∧B ∨ A∧¬C∧D∧¬B ∨ A∧¬C∧D∧B ∨ A∧C∧¬D∧¬B ∨ A∧C∧¬D∧B ∨ A∧C∧D∧¬B ∨ A∧C∧D∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ACDBF
00001
00010
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111
Fскнф = (A∨C∨D∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ACDBFж
00001
00010
00101
00111
01001
01011
01101
01111
10001
10011
10101
10111
11001
11011
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧C ⊕ C0010∧D ⊕ C0001∧B ⊕ C1100∧A∧C ⊕ C1010∧A∧D ⊕ C1001∧A∧B ⊕ C0110∧C∧D ⊕ C0101∧C∧B ⊕ C0011∧D∧B ⊕ C1110∧A∧C∧D ⊕ C1101∧A∧C∧B ⊕ C1011∧A∧D∧B ⊕ C0111∧C∧D∧B ⊕ C1111∧A∧C∧D∧B

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 1 => С1000 = 1 ⊕ 1 = 0
Fж(0100) = С0000 ⊕ С0100 = 1 => С0100 = 1 ⊕ 1 = 0
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 1 ⊕ 0 = 1
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 1 => С1011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ B ⊕ A∧B ⊕ C∧B ⊕ D∧B ⊕ A∧C∧B ⊕ A∧D∧B ⊕ C∧D∧B ⊕ A∧C∧D∧B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы