Таблица истинности для функции (X→Y)∧(Y→Z)∧(Z→W):


Промежуточные таблицы истинности:
X→Y:
XYX→Y
001
011
100
111

Y→Z:
YZY→Z
001
011
100
111

Z→W:
ZWZ→W
001
011
100
111

(X→Y)∧(Y→Z):
XYZX→YY→Z(X→Y)∧(Y→Z)
000111
001111
010100
011111
100010
101010
110100
111111

((X→Y)∧(Y→Z))∧(Z→W):
XYZWX→YY→Z(X→Y)∧(Y→Z)Z→W((X→Y)∧(Y→Z))∧(Z→W)
000011111
000111111
001011100
001111111
010010010
010110010
011011100
011111111
100001010
100101010
101001000
101101010
110010010
110110010
111011100
111111111

Общая таблица истинности:

XYZWX→YY→ZZ→W(X→Y)∧(Y→Z)(X→Y)∧(Y→Z)∧(Z→W)
000011111
000111111
001011010
001111111
010010100
010110100
011011010
011111111
100001100
100101100
101001000
101101100
110010100
110110100
111011010
111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZWF
00001
00011
00100
00111
01000
01010
01100
01111
10000
10010
10100
10110
11000
11010
11100
11111
Fсднф = ¬X∧¬Y∧¬Z∧¬W ∨ ¬X∧¬Y∧¬Z∧W ∨ ¬X∧¬Y∧Z∧W ∨ ¬X∧Y∧Z∧W ∨ X∧Y∧Z∧W
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZWF
00001
00011
00100
00111
01000
01010
01100
01111
10000
10010
10100
10110
11000
11010
11100
11111
Fскнф = (X∨Y∨¬Z∨W) ∧ (X∨¬Y∨Z∨W) ∧ (X∨¬Y∨Z∨¬W) ∧ (X∨¬Y∨¬Z∨W) ∧ (¬X∨Y∨Z∨W) ∧ (¬X∨Y∨Z∨¬W) ∧ (¬X∨Y∨¬Z∨W) ∧ (¬X∨Y∨¬Z∨¬W) ∧ (¬X∨¬Y∨Z∨W) ∧ (¬X∨¬Y∨Z∨¬W) ∧ (¬X∨¬Y∨¬Z∨W)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZWFж
00001
00011
00100
00111
01000
01010
01100
01111
10000
10010
10100
10110
11000
11010
11100
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧X ⊕ C0100∧Y ⊕ C0010∧Z ⊕ C0001∧W ⊕ C1100∧X∧Y ⊕ C1010∧X∧Z ⊕ C1001∧X∧W ⊕ C0110∧Y∧Z ⊕ C0101∧Y∧W ⊕ C0011∧Z∧W ⊕ C1110∧X∧Y∧Z ⊕ C1101∧X∧Y∧W ⊕ C1011∧X∧Z∧W ⊕ C0111∧Y∧Z∧W ⊕ C1111∧X∧Y∧Z∧W

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 1 ⊕ 0 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 1 ⊕ 0 = 1
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 = 1
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 1 => С0111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ X ⊕ Y ⊕ Z ⊕ X∧Y ⊕ X∧Z ⊕ Y∧Z ⊕ Z∧W ⊕ X∧Y∧Z ⊕ X∧Z∧W ⊕ X∧Y∧Z∧W
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2023, Список Литературы