Таблица истинности для функции A→(¬A∨B)→(¬A∨B):


Промежуточные таблицы истинности:
¬A:
A¬A
01
10

(¬A)∨B:
AB¬A(¬A)∨B
0011
0111
1000
1101

A→((¬A)∨B):
AB¬A(¬A)∨BA→((¬A)∨B)
00111
01111
10000
11011

(A→((¬A)∨B))→((¬A)∨B):
AB¬A(¬A)∨BA→((¬A)∨B)¬A(¬A)∨B(A→((¬A)∨B))→((¬A)∨B)
00111111
01111111
10000001
11011011

Общая таблица истинности:

AB¬A(¬A)∨BA→((¬A)∨B)A→(¬A∨B)→(¬A∨B)
001111
011111
100001
110111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
001
011
101
111
Fсднф = ¬A∧¬B ∨ ¬A∧B ∨ A∧¬B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
001
011
101
111
В таблице истинности нет набора значений переменных при которых функция ложна!

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
001
011
101
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 1 => С10 = 1 ⊕ 1 = 0
Fж(01) = С00 ⊕ С01 = 1 => С01 = 1 ⊕ 1 = 0
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы