Таблица истинности для функции (X1∨X2)∧(X3∨X4)∧(X5∨X6):


Промежуточные таблицы истинности:
X1∨X2:
X1X2X1∨X2
000
011
101
111

X3∨X4:
X3X4X3∨X4
000
011
101
111

X5∨X6:
X5X6X5∨X6
000
011
101
111

(X1∨X2)∧(X3∨X4):
X1X2X3X4X1∨X2X3∨X4(X1∨X2)∧(X3∨X4)
0000000
0001010
0010010
0011010
0100100
0101111
0110111
0111111
1000100
1001111
1010111
1011111
1100100
1101111
1110111
1111111

((X1∨X2)∧(X3∨X4))∧(X5∨X6):
X1X2X3X4X5X6X1∨X2X3∨X4(X1∨X2)∧(X3∨X4)X5∨X6((X1∨X2)∧(X3∨X4))∧(X5∨X6)
00000000000
00000100010
00001000010
00001100010
00010001000
00010101010
00011001010
00011101010
00100001000
00100101010
00101001010
00101101010
00110001000
00110101010
00111001010
00111101010
01000010000
01000110010
01001010010
01001110010
01010011100
01010111111
01011011111
01011111111
01100011100
01100111111
01101011111
01101111111
01110011100
01110111111
01111011111
01111111111
10000010000
10000110010
10001010010
10001110010
10010011100
10010111111
10011011111
10011111111
10100011100
10100111111
10101011111
10101111111
10110011100
10110111111
10111011111
10111111111
11000010000
11000110010
11001010010
11001110010
11010011100
11010111111
11011011111
11011111111
11100011100
11100111111
11101011111
11101111111
11110011100
11110111111
11111011111
11111111111

Общая таблица истинности:

X1X2X3X4X5X6X1∨X2X3∨X4X5∨X6(X1∨X2)∧(X3∨X4)(X1∨X2)∧(X3∨X4)∧(X5∨X6)
00000000000
00000100100
00001000100
00001100100
00010001000
00010101100
00011001100
00011101100
00100001000
00100101100
00101001100
00101101100
00110001000
00110101100
00111001100
00111101100
01000010000
01000110100
01001010100
01001110100
01010011010
01010111111
01011011111
01011111111
01100011010
01100111111
01101011111
01101111111
01110011010
01110111111
01111011111
01111111111
10000010000
10000110100
10001010100
10001110100
10010011010
10010111111
10011011111
10011111111
10100011010
10100111111
10101011111
10101111111
10110011010
10110111111
10111011111
10111111111
11000010000
11000110100
11001010100
11001110100
11010011010
11010111111
11011011111
11011111111
11100011010
11100111111
11101011111
11101111111
11110011010
11110111111
11111011111
11111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
X1X2X3X4X5X6F
0000000
0000010
0000100
0000110
0001000
0001010
0001100
0001110
0010000
0010010
0010100
0010110
0011000
0011010
0011100
0011110
0100000
0100010
0100100
0100110
0101000
0101011
0101101
0101111
0110000
0110011
0110101
0110111
0111000
0111011
0111101
0111111
1000000
1000010
1000100
1000110
1001000
1001011
1001101
1001111
1010000
1010011
1010101
1010111
1011000
1011011
1011101
1011111
1100000
1100010
1100100
1100110
1101000
1101011
1101101
1101111
1110000
1110011
1110101
1110111
1111000
1111011
1111101
1111111
Fсднф = ¬X1∧X2∧¬X3∧X4∧¬X5∧X6 ∨ ¬X1∧X2∧¬X3∧X4∧X5∧¬X6 ∨ ¬X1∧X2∧¬X3∧X4∧X5∧X6 ∨ ¬X1∧X2∧X3∧¬X4∧¬X5∧X6 ∨ ¬X1∧X2∧X3∧¬X4∧X5∧¬X6 ∨ ¬X1∧X2∧X3∧¬X4∧X5∧X6 ∨ ¬X1∧X2∧X3∧X4∧¬X5∧X6 ∨ ¬X1∧X2∧X3∧X4∧X5∧¬X6 ∨ ¬X1∧X2∧X3∧X4∧X5∧X6 ∨ X1∧¬X2∧¬X3∧X4∧¬X5∧X6 ∨ X1∧¬X2∧¬X3∧X4∧X5∧¬X6 ∨ X1∧¬X2∧¬X3∧X4∧X5∧X6 ∨ X1∧¬X2∧X3∧¬X4∧¬X5∧X6 ∨ X1∧¬X2∧X3∧¬X4∧X5∧¬X6 ∨ X1∧¬X2∧X3∧¬X4∧X5∧X6 ∨ X1∧¬X2∧X3∧X4∧¬X5∧X6 ∨ X1∧¬X2∧X3∧X4∧X5∧¬X6 ∨ X1∧¬X2∧X3∧X4∧X5∧X6 ∨ X1∧X2∧¬X3∧X4∧¬X5∧X6 ∨ X1∧X2∧¬X3∧X4∧X5∧¬X6 ∨ X1∧X2∧¬X3∧X4∧X5∧X6 ∨ X1∧X2∧X3∧¬X4∧¬X5∧X6 ∨ X1∧X2∧X3∧¬X4∧X5∧¬X6 ∨ X1∧X2∧X3∧¬X4∧X5∧X6 ∨ X1∧X2∧X3∧X4∧¬X5∧X6 ∨ X1∧X2∧X3∧X4∧X5∧¬X6 ∨ X1∧X2∧X3∧X4∧X5∧X6
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
X1X2X3X4X5X6F
0000000
0000010
0000100
0000110
0001000
0001010
0001100
0001110
0010000
0010010
0010100
0010110
0011000
0011010
0011100
0011110
0100000
0100010
0100100
0100110
0101000
0101011
0101101
0101111
0110000
0110011
0110101
0110111
0111000
0111011
0111101
0111111
1000000
1000010
1000100
1000110
1001000
1001011
1001101
1001111
1010000
1010011
1010101
1010111
1011000
1011011
1011101
1011111
1100000
1100010
1100100
1100110
1101000
1101011
1101101
1101111
1110000
1110011
1110101
1110111
1111000
1111011
1111101
1111111
Fскнф = (X1∨X2∨X3∨X4∨X5∨X6) ∧ (X1∨X2∨X3∨X4∨X5∨¬X6) ∧ (X1∨X2∨X3∨X4∨¬X5∨X6) ∧ (X1∨X2∨X3∨X4∨¬X5∨¬X6) ∧ (X1∨X2∨X3∨¬X4∨X5∨X6) ∧ (X1∨X2∨X3∨¬X4∨X5∨¬X6) ∧ (X1∨X2∨X3∨¬X4∨¬X5∨X6) ∧ (X1∨X2∨X3∨¬X4∨¬X5∨¬X6) ∧ (X1∨X2∨¬X3∨X4∨X5∨X6) ∧ (X1∨X2∨¬X3∨X4∨X5∨¬X6) ∧ (X1∨X2∨¬X3∨X4∨¬X5∨X6) ∧ (X1∨X2∨¬X3∨X4∨¬X5∨¬X6) ∧ (X1∨X2∨¬X3∨¬X4∨X5∨X6) ∧ (X1∨X2∨¬X3∨¬X4∨X5∨¬X6) ∧ (X1∨X2∨¬X3∨¬X4∨¬X5∨X6) ∧ (X1∨X2∨¬X3∨¬X4∨¬X5∨¬X6) ∧ (X1∨¬X2∨X3∨X4∨X5∨X6) ∧ (X1∨¬X2∨X3∨X4∨X5∨¬X6) ∧ (X1∨¬X2∨X3∨X4∨¬X5∨X6) ∧ (X1∨¬X2∨X3∨X4∨¬X5∨¬X6) ∧ (X1∨¬X2∨X3∨¬X4∨X5∨X6) ∧ (X1∨¬X2∨¬X3∨X4∨X5∨X6) ∧ (X1∨¬X2∨¬X3∨¬X4∨X5∨X6) ∧ (¬X1∨X2∨X3∨X4∨X5∨X6) ∧ (¬X1∨X2∨X3∨X4∨X5∨¬X6) ∧ (¬X1∨X2∨X3∨X4∨¬X5∨X6) ∧ (¬X1∨X2∨X3∨X4∨¬X5∨¬X6) ∧ (¬X1∨X2∨X3∨¬X4∨X5∨X6) ∧ (¬X1∨X2∨¬X3∨X4∨X5∨X6) ∧ (¬X1∨X2∨¬X3∨¬X4∨X5∨X6) ∧ (¬X1∨¬X2∨X3∨X4∨X5∨X6) ∧ (¬X1∨¬X2∨X3∨X4∨X5∨¬X6) ∧ (¬X1∨¬X2∨X3∨X4∨¬X5∨X6) ∧ (¬X1∨¬X2∨X3∨X4∨¬X5∨¬X6) ∧ (¬X1∨¬X2∨X3∨¬X4∨X5∨X6) ∧ (¬X1∨¬X2∨¬X3∨X4∨X5∨X6) ∧ (¬X1∨¬X2∨¬X3∨¬X4∨X5∨X6)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
X1X2X3X4X5X6Fж
0000000
0000010
0000100
0000110
0001000
0001010
0001100
0001110
0010000
0010010
0010100
0010110
0011000
0011010
0011100
0011110
0100000
0100010
0100100
0100110
0101000
0101011
0101101
0101111
0110000
0110011
0110101
0110111
0111000
0111011
0111101
0111111
1000000
1000010
1000100
1000110
1001000
1001011
1001101
1001111
1010000
1010011
1010101
1010111
1011000
1011011
1011101
1011111
1100000
1100010
1100100
1100110
1101000
1101011
1101101
1101111
1110000
1110011
1110101
1110111
1111000
1111011
1111101
1111111

Построим полином Жегалкина:
Fж = C000000 ⊕ C100000∧X1 ⊕ C010000∧X2 ⊕ C001000∧X3 ⊕ C000100∧X4 ⊕ C000010∧X5 ⊕ C000001∧X6 ⊕ C110000∧X1∧X2 ⊕ C101000∧X1∧X3 ⊕ C100100∧X1∧X4 ⊕ C100010∧X1∧X5 ⊕ C100001∧X1∧X6 ⊕ C011000∧X2∧X3 ⊕ C010100∧X2∧X4 ⊕ C010010∧X2∧X5 ⊕ C010001∧X2∧X6 ⊕ C001100∧X3∧X4 ⊕ C001010∧X3∧X5 ⊕ C001001∧X3∧X6 ⊕ C000110∧X4∧X5 ⊕ C000101∧X4∧X6 ⊕ C000011∧X5∧X6 ⊕ C111000∧X1∧X2∧X3 ⊕ C110100∧X1∧X2∧X4 ⊕ C110010∧X1∧X2∧X5 ⊕ C110001∧X1∧X2∧X6 ⊕ C101100∧X1∧X3∧X4 ⊕ C101010∧X1∧X3∧X5 ⊕ C101001∧X1∧X3∧X6 ⊕ C100110∧X1∧X4∧X5 ⊕ C100101∧X1∧X4∧X6 ⊕ C100011∧X1∧X5∧X6 ⊕ C011100∧X2∧X3∧X4 ⊕ C011010∧X2∧X3∧X5 ⊕ C011001∧X2∧X3∧X6 ⊕ C010110∧X2∧X4∧X5 ⊕ C010101∧X2∧X4∧X6 ⊕ C010011∧X2∧X5∧X6 ⊕ C001110∧X3∧X4∧X5 ⊕ C001101∧X3∧X4∧X6 ⊕ C001011∧X3∧X5∧X6 ⊕ C000111∧X4∧X5∧X6 ⊕ C111100∧X1∧X2∧X3∧X4 ⊕ C111010∧X1∧X2∧X3∧X5 ⊕ C111001∧X1∧X2∧X3∧X6 ⊕ C110110∧X1∧X2∧X4∧X5 ⊕ C110101∧X1∧X2∧X4∧X6 ⊕ C110011∧X1∧X2∧X5∧X6 ⊕ C101110∧X1∧X3∧X4∧X5 ⊕ C101101∧X1∧X3∧X4∧X6 ⊕ C101011∧X1∧X3∧X5∧X6 ⊕ C100111∧X1∧X4∧X5∧X6 ⊕ C011110∧X2∧X3∧X4∧X5 ⊕ C011101∧X2∧X3∧X4∧X6 ⊕ C011011∧X2∧X3∧X5∧X6 ⊕ C010111∧X2∧X4∧X5∧X6 ⊕ C001111∧X3∧X4∧X5∧X6 ⊕ C111110∧X1∧X2∧X3∧X4∧X5 ⊕ C111101∧X1∧X2∧X3∧X4∧X6 ⊕ C111011∧X1∧X2∧X3∧X5∧X6 ⊕ C110111∧X1∧X2∧X4∧X5∧X6 ⊕ C101111∧X1∧X3∧X4∧X5∧X6 ⊕ C011111∧X2∧X3∧X4∧X5∧X6 ⊕ C111111∧X1∧X2∧X3∧X4∧X5∧X6

Так как Fж(000000) = 0, то С000000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100000) = С000000 ⊕ С100000 = 0 => С100000 = 0 ⊕ 0 = 0
Fж(010000) = С000000 ⊕ С010000 = 0 => С010000 = 0 ⊕ 0 = 0
Fж(001000) = С000000 ⊕ С001000 = 0 => С001000 = 0 ⊕ 0 = 0
Fж(000100) = С000000 ⊕ С000100 = 0 => С000100 = 0 ⊕ 0 = 0
Fж(000010) = С000000 ⊕ С000010 = 0 => С000010 = 0 ⊕ 0 = 0
Fж(000001) = С000000 ⊕ С000001 = 0 => С000001 = 0 ⊕ 0 = 0
Fж(110000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С110000 = 0 => С110000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101000) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С101000 = 0 => С101000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100100) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С100100 = 0 => С100100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100010) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С100010 = 0 => С100010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(100001) = С000000 ⊕ С100000 ⊕ С000001 ⊕ С100001 = 0 => С100001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011000) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С011000 = 0 => С011000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(010100) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С010100 = 0 => С010100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(010010) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С010010 = 0 => С010010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(010001) = С000000 ⊕ С010000 ⊕ С000001 ⊕ С010001 = 0 => С010001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001100) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С001100 = 0 => С001100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001010) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С001010 = 0 => С001010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001001) = С000000 ⊕ С001000 ⊕ С000001 ⊕ С001001 = 0 => С001001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(000110) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000110 = 0 => С000110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(000101) = С000000 ⊕ С000100 ⊕ С000001 ⊕ С000101 = 0 => С000101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(000011) = С000000 ⊕ С000010 ⊕ С000001 ⊕ С000011 = 0 => С000011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111000) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С110000 ⊕ С101000 ⊕ С011000 ⊕ С111000 = 0 => С111000 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С110000 ⊕ С100100 ⊕ С010100 ⊕ С110100 = 0 => С110100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С110000 ⊕ С100010 ⊕ С010010 ⊕ С110010 = 0 => С110010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(110001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000001 ⊕ С110000 ⊕ С100001 ⊕ С010001 ⊕ С110001 = 0 => С110001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101100) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С101000 ⊕ С100100 ⊕ С001100 ⊕ С101100 = 0 => С101100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101010) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С101000 ⊕ С100010 ⊕ С001010 ⊕ С101010 = 1 => С101010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(101001) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000001 ⊕ С101000 ⊕ С100001 ⊕ С001001 ⊕ С101001 = 1 => С101001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(100110) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С100100 ⊕ С100010 ⊕ С000110 ⊕ С100110 = 1 => С100110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(100101) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000001 ⊕ С100100 ⊕ С100001 ⊕ С000101 ⊕ С100101 = 1 => С100101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(100011) = С000000 ⊕ С100000 ⊕ С000010 ⊕ С000001 ⊕ С100010 ⊕ С100001 ⊕ С000011 ⊕ С100011 = 0 => С100011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011100) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С011100 = 0 => С011100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011010) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С011010 = 1 => С011010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011001) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С011001 = 1 => С011001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(010110) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С010110 = 1 => С010110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(010101) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С010101 = 1 => С010101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(010011) = С000000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С010011 = 0 => С010011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001110) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С001110 = 0 => С001110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001101) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С001101 = 0 => С001101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(001011) = С000000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С001011 = 0 => С001011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(000111) = С000000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С000111 = 0 => С000111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111100) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С011000 ⊕ С010100 ⊕ С001100 ⊕ С111000 ⊕ С110100 ⊕ С101100 ⊕ С011100 ⊕ С111100 = 0 => С111100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111010) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С011000 ⊕ С010010 ⊕ С001010 ⊕ С111000 ⊕ С110010 ⊕ С101010 ⊕ С011010 ⊕ С111010 = 1 => С111010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(111001) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100001 ⊕ С011000 ⊕ С010001 ⊕ С001001 ⊕ С111000 ⊕ С110001 ⊕ С101001 ⊕ С011001 ⊕ С111001 = 1 => С111001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(110110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С010100 ⊕ С010010 ⊕ С000110 ⊕ С110100 ⊕ С110010 ⊕ С100110 ⊕ С010110 ⊕ С110110 = 1 => С110110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(110101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100001 ⊕ С010100 ⊕ С010001 ⊕ С000101 ⊕ С110100 ⊕ С110001 ⊕ С100101 ⊕ С010101 ⊕ С110101 = 1 => С110101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(110011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100010 ⊕ С100001 ⊕ С010010 ⊕ С010001 ⊕ С000011 ⊕ С110010 ⊕ С110001 ⊕ С100011 ⊕ С010011 ⊕ С110011 = 0 => С110011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101110) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С001110 ⊕ С101110 = 1 => С101110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(101101) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С001101 ⊕ С101101 = 1 => С101101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(101011) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С001011 ⊕ С101011 = 1 => С101011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(100111) = С000000 ⊕ С100000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С000111 ⊕ С100111 = 1 => С100111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(011110) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С011110 = 1 => С011110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011101) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С011101 = 1 => С011101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011011) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С011011 = 1 => С011011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(010111) = С000000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С010111 = 1 => С010111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(001111) = С000000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С001111 = 0 => С001111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111110) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С001100 ⊕ С001010 ⊕ С000110 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С101100 ⊕ С101010 ⊕ С100110 ⊕ С011100 ⊕ С011010 ⊕ С010110 ⊕ С001110 ⊕ С111100 ⊕ С111010 ⊕ С110110 ⊕ С101110 ⊕ С011110 ⊕ С111110 = 1 => С111110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(111101) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010001 ⊕ С001100 ⊕ С001001 ⊕ С000101 ⊕ С111000 ⊕ С110100 ⊕ С110001 ⊕ С101100 ⊕ С101001 ⊕ С100101 ⊕ С011100 ⊕ С011001 ⊕ С010101 ⊕ С001101 ⊕ С111100 ⊕ С111001 ⊕ С110101 ⊕ С101101 ⊕ С011101 ⊕ С111101 = 1 => С111101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(111011) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010010 ⊕ С010001 ⊕ С001010 ⊕ С001001 ⊕ С000011 ⊕ С111000 ⊕ С110010 ⊕ С110001 ⊕ С101010 ⊕ С101001 ⊕ С100011 ⊕ С011010 ⊕ С011001 ⊕ С010011 ⊕ С001011 ⊕ С111010 ⊕ С111001 ⊕ С110011 ⊕ С101011 ⊕ С011011 ⊕ С111011 = 1 => С111011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(110111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С000111 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С100111 ⊕ С010111 ⊕ С110111 = 1 => С110111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 1
Fж(101111) = С000000 ⊕ С100000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С001111 ⊕ С101111 = 1 => С101111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(011111) = С000000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С011111 = 1 => С011111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(111111) = С000000 ⊕ С100000 ⊕ С010000 ⊕ С001000 ⊕ С000100 ⊕ С000010 ⊕ С000001 ⊕ С110000 ⊕ С101000 ⊕ С100100 ⊕ С100010 ⊕ С100001 ⊕ С011000 ⊕ С010100 ⊕ С010010 ⊕ С010001 ⊕ С001100 ⊕ С001010 ⊕ С001001 ⊕ С000110 ⊕ С000101 ⊕ С000011 ⊕ С111000 ⊕ С110100 ⊕ С110010 ⊕ С110001 ⊕ С101100 ⊕ С101010 ⊕ С101001 ⊕ С100110 ⊕ С100101 ⊕ С100011 ⊕ С011100 ⊕ С011010 ⊕ С011001 ⊕ С010110 ⊕ С010101 ⊕ С010011 ⊕ С001110 ⊕ С001101 ⊕ С001011 ⊕ С000111 ⊕ С111100 ⊕ С111010 ⊕ С111001 ⊕ С110110 ⊕ С110101 ⊕ С110011 ⊕ С101110 ⊕ С101101 ⊕ С101011 ⊕ С100111 ⊕ С011110 ⊕ С011101 ⊕ С011011 ⊕ С010111 ⊕ С001111 ⊕ С111110 ⊕ С111101 ⊕ С111011 ⊕ С110111 ⊕ С101111 ⊕ С011111 ⊕ С111111 = 1 => С111111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X1∧X3∧X5 ⊕ X1∧X3∧X6 ⊕ X1∧X4∧X5 ⊕ X1∧X4∧X6 ⊕ X2∧X3∧X5 ⊕ X2∧X3∧X6 ⊕ X2∧X4∧X5 ⊕ X2∧X4∧X6 ⊕ X1∧X2∧X3∧X5 ⊕ X1∧X2∧X3∧X6 ⊕ X1∧X2∧X4∧X5 ⊕ X1∧X2∧X4∧X6 ⊕ X1∧X3∧X4∧X5 ⊕ X1∧X3∧X4∧X6 ⊕ X1∧X3∧X5∧X6 ⊕ X1∧X4∧X5∧X6 ⊕ X2∧X3∧X4∧X5 ⊕ X2∧X3∧X4∧X6 ⊕ X2∧X3∧X5∧X6 ⊕ X2∧X4∧X5∧X6 ⊕ X1∧X2∧X3∧X4∧X5 ⊕ X1∧X2∧X3∧X4∧X6 ⊕ X1∧X2∧X3∧X5∧X6 ⊕ X1∧X2∧X4∧X5∧X6 ⊕ X1∧X3∧X4∧X5∧X6 ⊕ X2∧X3∧X4∧X5∧X6 ⊕ X1∧X2∧X3∧X4∧X5∧X6
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы