Список литературы
Генератор кроссвордов
Генератор титульных листов
Таблица истинности ONLINE
Прочие ONLINE сервисы
|
Таблица истинности для функции (X?(Y?Z))(X?Y)(X?Z):
Промежуточные таблицы истинности:Общая таблица истинности:X? | Y?Z | X?Y | X?Z | (X?(Y?Z))(X?Y)(X?Z) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности: X? | Y?Z | X?Y | X?Z | F | 0 | 0 | 0 | 0 | ( | 0 | 0 | 0 | 1 | ( | 0 | 0 | 1 | 0 | ( | 0 | 0 | 1 | 1 | ( | 0 | 1 | 0 | 0 | ( | 0 | 1 | 0 | 1 | ( | 0 | 1 | 1 | 0 | ( | 0 | 1 | 1 | 1 | ( | 1 | 0 | 0 | 0 | ( | 1 | 0 | 0 | 1 | ( | 1 | 0 | 1 | 0 | ( | 1 | 0 | 1 | 1 | ( | 1 | 1 | 0 | 0 | ( | 1 | 1 | 0 | 1 | ( | 1 | 1 | 1 | 0 | ( | 1 | 1 | 1 | 1 | ( |
В таблице истинности нет набора значений переменных при которых функция истинна!
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности: X? | Y?Z | X?Y | X?Z | F | 0 | 0 | 0 | 0 | ( | 0 | 0 | 0 | 1 | ( | 0 | 0 | 1 | 0 | ( | 0 | 0 | 1 | 1 | ( | 0 | 1 | 0 | 0 | ( | 0 | 1 | 0 | 1 | ( | 0 | 1 | 1 | 0 | ( | 0 | 1 | 1 | 1 | ( | 1 | 0 | 0 | 0 | ( | 1 | 0 | 0 | 1 | ( | 1 | 0 | 1 | 0 | ( | 1 | 0 | 1 | 1 | ( | 1 | 1 | 0 | 0 | ( | 1 | 1 | 0 | 1 | ( | 1 | 1 | 1 | 0 | ( | 1 | 1 | 1 | 1 | ( |
F скнф = (X?∨Y?Z∨X?Y∨X?Z) ∧ (X?∨Y?Z∨X?Y∨¬X?Z) ∧ (X?∨Y?Z∨¬X?Y∨X?Z) ∧ (X?∨Y?Z∨¬X?Y∨¬X?Z) ∧ (X?∨¬Y?Z∨X?Y∨X?Z) ∧ (X?∨¬Y?Z∨X?Y∨¬X?Z) ∧ (X?∨¬Y?Z∨¬X?Y∨X?Z) ∧ (X?∨¬Y?Z∨¬X?Y∨¬X?Z) ∧ (¬X?∨Y?Z∨X?Y∨X?Z) ∧ (¬X?∨Y?Z∨X?Y∨¬X?Z) ∧ (¬X?∨Y?Z∨¬X?Y∨X?Z) ∧ (¬X?∨Y?Z∨¬X?Y∨¬X?Z) ∧ (¬X?∨¬Y?Z∨X?Y∨X?Z) ∧ (¬X?∨¬Y?Z∨X?Y∨¬X?Z) ∧ (¬X?∨¬Y?Z∨¬X?Y∨X?Z) ∧ (¬X?∨¬Y?Z∨¬X?Y∨¬X?Z) Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции X? | Y?Z | X?Y | X?Z | Fж | 0 | 0 | 0 | 0 | ( | 0 | 0 | 0 | 1 | ( | 0 | 0 | 1 | 0 | ( | 0 | 0 | 1 | 1 | ( | 0 | 1 | 0 | 0 | ( | 0 | 1 | 0 | 1 | ( | 0 | 1 | 1 | 0 | ( | 0 | 1 | 1 | 1 | ( | 1 | 0 | 0 | 0 | ( | 1 | 0 | 0 | 1 | ( | 1 | 0 | 1 | 0 | ( | 1 | 0 | 1 | 1 | ( | 1 | 1 | 0 | 0 | ( | 1 | 1 | 0 | 1 | ( | 1 | 1 | 1 | 0 | ( | 1 | 1 | 1 | 1 | ( |
Построим полином Жегалкина: F ж = C 0000 ⊕ C 1000∧X? ⊕ C 0100∧Y?Z ⊕ C 0010∧X?Y ⊕ C 0001∧X?Z ⊕ C 1100∧X?∧Y?Z ⊕ C 1010∧X?∧X?Y ⊕ C 1001∧X?∧X?Z ⊕ C 0110∧Y?Z∧X?Y ⊕ C 0101∧Y?Z∧X?Z ⊕ C 0011∧X?Y∧X?Z ⊕ C 1110∧X?∧Y?Z∧X?Y ⊕ C 1101∧X?∧Y?Z∧X?Z ⊕ C 1011∧X?∧X?Y∧X?Z ⊕ C 0111∧Y?Z∧X?Y∧X?Z ⊕ C 1111∧X?∧Y?Z∧X?Y∧X?Z Так как F ж(0000) = (, то С 0000 = (. Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы: F ж(1000) = С 0000 ⊕ С 1000 = ( => С 1000 = ( ⊕ ( = 0 F ж(0100) = С 0000 ⊕ С 0100 = ( => С 0100 = ( ⊕ ( = 0 F ж(0010) = С 0000 ⊕ С 0010 = ( => С 0010 = ( ⊕ ( = 0 F ж(0001) = С 0000 ⊕ С 0001 = ( => С 0001 = ( ⊕ ( = 0 F ж(1100) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 1100 = ( => С 1100 = ( ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(1010) = С 0000 ⊕ С 1000 ⊕ С 0010 ⊕ С 1010 = ( => С 1010 = ( ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(1001) = С 0000 ⊕ С 1000 ⊕ С 0001 ⊕ С 1001 = ( => С 1001 = ( ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(0110) = С 0000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0110 = ( => С 0110 = ( ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(0101) = С 0000 ⊕ С 0100 ⊕ С 0001 ⊕ С 0101 = ( => С 0101 = ( ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(0011) = С 0000 ⊕ С 0010 ⊕ С 0001 ⊕ С 0011 = ( => С 0011 = ( ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(1110) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0010 ⊕ С 1100 ⊕ С 1010 ⊕ С 0110 ⊕ С 1110 = ( => С 1110 = ( ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(1101) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0001 ⊕ С 1100 ⊕ С 1001 ⊕ С 0101 ⊕ С 1101 = ( => С 1101 = ( ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(1011) = С 0000 ⊕ С 1000 ⊕ С 0010 ⊕ С 0001 ⊕ С 1010 ⊕ С 1001 ⊕ С 0011 ⊕ С 1011 = ( => С 1011 = ( ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(0111) = С 0000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0001 ⊕ С 0110 ⊕ С 0101 ⊕ С 0011 ⊕ С 0111 = ( => С 0111 = ( ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ ( = 0 F ж(1111) = С 0000 ⊕ С 1000 ⊕ С 0100 ⊕ С 0010 ⊕ С 0001 ⊕ С 1100 ⊕ С 1010 ⊕ С 1001 ⊕ С 0110 ⊕ С 0101 ⊕ С 0011 ⊕ С 1110 ⊕ С 1101 ⊕ С 1011 ⊕ С 0111 ⊕ С 1111 = ( => С 1111 = ( ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ ( = 0 Таким образом, полином Жегалкина будет равен: F ж = (
|
 |
 |
 |
|
Вход на сайт
Информация
В нашем каталоге
Околостуденческое
|