Таблица истинности для функции (A∧B)⊕(¬A∨B)⊕B:


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

¬A:
A¬A
01
10

(¬A)∨B:
AB¬A(¬A)∨B
0011
0111
1000
1101

(A∧B)⊕((¬A)∨B):
ABA∧B¬A(¬A)∨B(A∧B)⊕((¬A)∨B)
000111
010111
100000
111010

((A∧B)⊕((¬A)∨B))⊕B:
ABA∧B¬A(¬A)∨B(A∧B)⊕((¬A)∨B)((A∧B)⊕((¬A)∨B))⊕B
0001111
0101110
1000000
1110101

Общая таблица истинности:

ABA∧B¬A(¬A)∨B(A∧B)⊕((¬A)∨B)(A∧B)⊕(¬A∨B)⊕B
0001111
0101110
1000000
1110101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABF
001
010
100
111
Fсднф = ¬A∧¬B ∨ A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABF
001
010
100
111
Fскнф = (A∨¬B) ∧ (¬A∨B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABFж
001
010
100
111

Построим полином Жегалкина:
Fж = C00 ⊕ C10∧A ⊕ C01∧B ⊕ C11∧A∧B

Так как Fж(00) = 1, то С00 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(10) = С00 ⊕ С10 = 0 => С10 = 1 ⊕ 0 = 1
Fж(01) = С00 ⊕ С01 = 0 => С01 = 1 ⊕ 0 = 1
Fж(11) = С00 ⊕ С10 ⊕ С01 ⊕ С11 = 1 => С11 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы