Таблица истинности для функции (X⊕¬Y)→((X∨Z)↓Y):


Промежуточные таблицы истинности:
¬Y:
Y¬Y
01
10

X⊕(¬Y):
XY¬YX⊕(¬Y)
0011
0100
1010
1101

X∨Z:
XZX∨Z
000
011
101
111

(X∨Z)↓Y:
XZYX∨Z(X∨Z)↓Y
00001
00100
01010
01110
10010
10110
11010
11110

(X⊕(¬Y))→((X∨Z)↓Y):
XYZ¬YX⊕(¬Y)X∨Z(X∨Z)↓Y(X⊕(¬Y))→((X∨Z)↓Y)
00011011
00111100
01000001
01100101
10010101
10110101
11001100
11101100

Общая таблица истинности:

XYZ¬YX⊕(¬Y)X∨Z(X∨Z)↓Y(X⊕¬Y)→((X∨Z)↓Y)
00011011
00111100
01000001
01100101
10010101
10110101
11001100
11101100

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0001
0010
0101
0111
1001
1011
1100
1110
Fсднф = ¬X∧¬Y∧¬Z ∨ ¬X∧Y∧¬Z ∨ ¬X∧Y∧Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0001
0010
0101
0111
1001
1011
1100
1110
Fскнф = (X∨Y∨¬Z) ∧ (¬X∨¬Y∨Z) ∧ (¬X∨¬Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0001
0010
0101
0111
1001
1011
1100
1110

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 1 ⊕ 1 = 0
Fж(010) = С000 ⊕ С010 = 1 => С010 = 1 ⊕ 1 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 1 ⊕ 0 = 1
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 1 => С011 = 1 ⊕ 0 ⊕ 1 ⊕ 1 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 0 => С111 = 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ Z ⊕ X∧Y ⊕ X∧Z ⊕ Y∧Z ⊕ X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы