Таблица истинности для функции F∧(X∧Y∧Z)≡(X∧Y)→((X∧Z)∧Y):


Промежуточные таблицы истинности:
X∧Y:
XYX∧Y
000
010
100
111

(X∧Y)∧Z:
XYZX∧Y(X∧Y)∧Z
00000
00100
01000
01100
10000
10100
11010
11111

X∧Z:
XZX∧Z
000
010
100
111

(X∧Z)∧Y:
XZYX∧Z(X∧Z)∧Y
00000
00100
01000
01100
10000
10100
11010
11111

F∧((X∧Y)∧Z):
FXYZX∧Y(X∧Y)∧ZF∧((X∧Y)∧Z)
0000000
0001000
0010000
0011000
0100000
0101000
0110100
0111110
1000000
1001000
1010000
1011000
1100000
1101000
1110100
1111111

(X∧Y)→((X∧Z)∧Y):
XYZX∧YX∧Z(X∧Z)∧Y(X∧Y)→((X∧Z)∧Y)
0000001
0010001
0100001
0110001
1000001
1010101
1101000
1111111

(F∧((X∧Y)∧Z))≡((X∧Y)→((X∧Z)∧Y)):
FXYZX∧Y(X∧Y)∧ZF∧((X∧Y)∧Z)X∧YX∧Z(X∧Z)∧Y(X∧Y)→((X∧Z)∧Y)(F∧((X∧Y)∧Z))≡((X∧Y)→((X∧Z)∧Y))
000000000010
000100000010
001000000010
001100000010
010000000010
010100001010
011010010001
011111011110
100000000010
100100000010
101000000010
101100000010
110000000010
110100001010
111010010001
111111111111

Общая таблица истинности:

FXYZX∧Y(X∧Y)∧ZX∧Z(X∧Z)∧YF∧((X∧Y)∧Z)(X∧Y)→((X∧Z)∧Y)F∧(X∧Y∧Z)≡(X∧Y)→((X∧Z)∧Y)
00000000010
00010000010
00100000010
00110000010
01000000010
01010010010
01101000001
01111111010
10000000010
10010000010
10100000010
10110000010
11000000010
11010010010
11101000001
11111111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
FXYZF
00000
00010
00100
00110
01000
01010
01101
01110
10000
10010
10100
10110
11000
11010
11101
11111
Fсднф = ¬F∧X∧Y∧¬Z ∨ F∧X∧Y∧¬Z ∨ F∧X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
FXYZF
00000
00010
00100
00110
01000
01010
01101
01110
10000
10010
10100
10110
11000
11010
11101
11111
Fскнф = (F∨X∨Y∨Z) ∧ (F∨X∨Y∨¬Z) ∧ (F∨X∨¬Y∨Z) ∧ (F∨X∨¬Y∨¬Z) ∧ (F∨¬X∨Y∨Z) ∧ (F∨¬X∨Y∨¬Z) ∧ (F∨¬X∨¬Y∨¬Z) ∧ (¬F∨X∨Y∨Z) ∧ (¬F∨X∨Y∨¬Z) ∧ (¬F∨X∨¬Y∨Z) ∧ (¬F∨X∨¬Y∨¬Z) ∧ (¬F∨¬X∨Y∨Z) ∧ (¬F∨¬X∨Y∨¬Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
FXYZFж
00000
00010
00100
00110
01000
01010
01101
01110
10000
10010
10100
10110
11000
11010
11101
11111

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧F ⊕ C0100∧X ⊕ C0010∧Y ⊕ C0001∧Z ⊕ C1100∧F∧X ⊕ C1010∧F∧Y ⊕ C1001∧F∧Z ⊕ C0110∧X∧Y ⊕ C0101∧X∧Z ⊕ C0011∧Y∧Z ⊕ C1110∧F∧X∧Y ⊕ C1101∧F∧X∧Z ⊕ C1011∧F∧Y∧Z ⊕ C0111∧X∧Y∧Z ⊕ C1111∧F∧X∧Y∧Z

Так как Fж(0000) = 0, то С0000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 0 ⊕ 0 = 0
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 0 ⊕ 0 = 0
Fж(0010) = С0000 ⊕ С0010 = 0 => С0010 = 0 ⊕ 0 = 0
Fж(0001) = С0000 ⊕ С0001 = 0 => С0001 = 0 ⊕ 0 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 0 => С1100 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 0 => С1010 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 0 => С1001 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 1 => С0110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 0 => С0101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 0 => С0011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 1 => С1110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 0 => С1101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 1 => С1111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = X∧Y ⊕ X∧Y∧Z ⊕ F∧X∧Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы