Таблица истинности для функции C≡(A∧B)∨A∧(¬B):


Промежуточные таблицы истинности:
A∧B:
ABA∧B
000
010
100
111

¬B:
B¬B
01
10

A∧(¬B):
AB¬BA∧(¬B)
0010
0100
1011
1100

(A∧B)∨(A∧(¬B)):
ABA∧B¬BA∧(¬B)(A∧B)∨(A∧(¬B))
000100
010000
100111
111001

C≡((A∧B)∨(A∧(¬B))):
CABA∧B¬BA∧(¬B)(A∧B)∨(A∧(¬B))C≡((A∧B)∨(A∧(¬B)))
00001001
00100001
01001110
01110010
10001000
10100000
11001111
11110011

Общая таблица истинности:

CABA∧B¬BA∧(¬B)(A∧B)∨(A∧(¬B))C≡(A∧B)∨A∧(¬B)
00001001
00100001
01001110
01110010
10001000
10100000
11001111
11110011

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
CABF
0001
0011
0100
0110
1000
1010
1101
1111
Fсднф = ¬C∧¬A∧¬B ∨ ¬C∧¬A∧B ∨ C∧A∧¬B ∨ C∧A∧B
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
CABF
0001
0011
0100
0110
1000
1010
1101
1111
Fскнф = (C∨¬A∨B) ∧ (C∨¬A∨¬B) ∧ (¬C∨A∨B) ∧ (¬C∨A∨¬B)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
CABFж
0001
0011
0100
0110
1000
1010
1101
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧C ⊕ C010∧A ⊕ C001∧B ⊕ C110∧C∧A ⊕ C101∧C∧B ⊕ C011∧A∧B ⊕ C111∧C∧A∧B

Так как Fж(000) = 1, то С000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 1 ⊕ 0 = 1
Fж(010) = С000 ⊕ С010 = 0 => С010 = 1 ⊕ 0 = 1
Fж(001) = С000 ⊕ С001 = 1 => С001 = 1 ⊕ 1 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 1 => С110 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ C ⊕ A
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы