Промежуточные таблицы истинности:Y∨Z:
Z∨E:
¬E:
Y∨(¬E):
Y | E | ¬E | Y∨(¬E) |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
X∧(Y∨Z):
X | Y | Z | Y∨Z | X∧(Y∨Z) |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 1 | 1 |
(X∧(Y∨Z))∧(Z∨E):
X | Y | Z | E | Y∨Z | X∧(Y∨Z) | Z∨E | (X∧(Y∨Z))∧(Z∨E) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
((X∧(Y∨Z))∧(Z∨E))∧(Y∨(¬E)):
X | Y | Z | E | Y∨Z | X∧(Y∨Z) | Z∨E | (X∧(Y∨Z))∧(Z∨E) | ¬E | Y∨(¬E) | ((X∧(Y∨Z))∧(Z∨E))∧(Y∨(¬E)) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
¬(((X∧(Y∨Z))∧(Z∨E))∧(Y∨(¬E))):
X | Y | Z | E | Y∨Z | X∧(Y∨Z) | Z∨E | (X∧(Y∨Z))∧(Z∨E) | ¬E | Y∨(¬E) | ((X∧(Y∨Z))∧(Z∨E))∧(Y∨(¬E)) | ¬(((X∧(Y∨Z))∧(Z∨E))∧(Y∨(¬E))) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
Общая таблица истинности:
X | Y | Z | E | Y∨Z | Z∨E | ¬E | Y∨(¬E) | X∧(Y∨Z) | (X∧(Y∨Z))∧(Z∨E) | ((X∧(Y∨Z))∧(Z∨E))∧(Y∨(¬E)) | ¬(X∧(Y∨Z)∧(Z∨E)∧(Y∨¬E)) |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
Логическая схема:
Совершенная дизъюнктивная нормальная форма (СДНФ):
По таблице истинности:
X | Y | Z | E | F |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 |
F
сднф = ¬X∧¬Y∧¬Z∧¬E ∨ ¬X∧¬Y∧¬Z∧E ∨ ¬X∧¬Y∧Z∧¬E ∨ ¬X∧¬Y∧Z∧E ∨ ¬X∧Y∧¬Z∧¬E ∨ ¬X∧Y∧¬Z∧E ∨ ¬X∧Y∧Z∧¬E ∨ ¬X∧Y∧Z∧E ∨ X∧¬Y∧¬Z∧¬E ∨ X∧¬Y∧¬Z∧E ∨ X∧¬Y∧Z∧E ∨ X∧Y∧¬Z∧¬E
Логическая cхема:
Совершенная конъюнктивная нормальная форма (СКНФ):
По таблице истинности:
X | Y | Z | E | F |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 |
F
скнф = (¬X∨Y∨¬Z∨E) ∧ (¬X∨¬Y∨Z∨¬E) ∧ (¬X∨¬Y∨¬Z∨E) ∧ (¬X∨¬Y∨¬Z∨¬E)
Логическая cхема:
Построение полинома Жегалкина:
По таблице истинности функции
X | Y | Z | E | Fж |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 |
Построим полином Жегалкина:
F
ж = C
0000 ⊕ C
1000∧X ⊕ C
0100∧Y ⊕ C
0010∧Z ⊕ C
0001∧E ⊕ C
1100∧X∧Y ⊕ C
1010∧X∧Z ⊕ C
1001∧X∧E ⊕ C
0110∧Y∧Z ⊕ C
0101∧Y∧E ⊕ C
0011∧Z∧E ⊕ C
1110∧X∧Y∧Z ⊕ C
1101∧X∧Y∧E ⊕ C
1011∧X∧Z∧E ⊕ C
0111∧Y∧Z∧E ⊕ C
1111∧X∧Y∧Z∧E
Так как F
ж(0000) = 1, то С
0000 = 1.
Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
F
ж(1000) = С
0000 ⊕ С
1000 = 1 => С
1000 = 1 ⊕ 1 = 0
F
ж(0100) = С
0000 ⊕ С
0100 = 1 => С
0100 = 1 ⊕ 1 = 0
F
ж(0010) = С
0000 ⊕ С
0010 = 1 => С
0010 = 1 ⊕ 1 = 0
F
ж(0001) = С
0000 ⊕ С
0001 = 1 => С
0001 = 1 ⊕ 1 = 0
F
ж(1100) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
1100 = 1 => С
1100 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(1010) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
1010 = 0 => С
1010 = 1 ⊕ 0 ⊕ 0 ⊕ 0 = 1
F
ж(1001) = С
0000 ⊕ С
1000 ⊕ С
0001 ⊕ С
1001 = 1 => С
1001 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(0110) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0110 = 1 => С
0110 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(0101) = С
0000 ⊕ С
0100 ⊕ С
0001 ⊕ С
0101 = 1 => С
0101 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(0011) = С
0000 ⊕ С
0010 ⊕ С
0001 ⊕ С
0011 = 1 => С
0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(1110) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
1100 ⊕ С
1010 ⊕ С
0110 ⊕ С
1110 = 0 => С
1110 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
F
ж(1101) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0001 ⊕ С
1100 ⊕ С
1001 ⊕ С
0101 ⊕ С
1101 = 0 => С
1101 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 = 1
F
ж(1011) = С
0000 ⊕ С
1000 ⊕ С
0010 ⊕ С
0001 ⊕ С
1010 ⊕ С
1001 ⊕ С
0011 ⊕ С
1011 = 1 => С
1011 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 = 1
F
ж(0111) = С
0000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
0111 = 1 => С
0111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 0
F
ж(1111) = С
0000 ⊕ С
1000 ⊕ С
0100 ⊕ С
0010 ⊕ С
0001 ⊕ С
1100 ⊕ С
1010 ⊕ С
1001 ⊕ С
0110 ⊕ С
0101 ⊕ С
0011 ⊕ С
1110 ⊕ С
1101 ⊕ С
1011 ⊕ С
0111 ⊕ С
1111 = 0 => С
1111 = 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Таким образом, полином Жегалкина будет равен:
F
ж = 1 ⊕ X∧Z ⊕ X∧Y∧E ⊕ X∧Z∧E
Логическая схема, соответствующая полиному Жегалкина: