Таблица истинности для функции ¬(X→Y)∨(Y∧(X≡Z)):


Промежуточные таблицы истинности:
X→Y:
XYX→Y
001
011
100
111

X≡Z:
XZX≡Z
001
010
100
111

Y∧(X≡Z):
YXZX≡ZY∧(X≡Z)
00010
00100
01000
01110
10011
10100
11000
11111

¬(X→Y):
XYX→Y¬(X→Y)
0010
0110
1001
1110

(¬(X→Y))∨(Y∧(X≡Z)):
XYZX→Y¬(X→Y)X≡ZY∧(X≡Z)(¬(X→Y))∨(Y∧(X≡Z))
00010100
00110000
01010111
01110000
10001001
10101101
11010000
11110111

Общая таблица истинности:

XYZX→YX≡ZY∧(X≡Z)¬(X→Y)¬(X→Y)∨(Y∧(X≡Z))
00011000
00110000
01011101
01110000
10000011
10101011
11010000
11111101

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
XYZF
0000
0010
0101
0110
1001
1011
1100
1111
Fсднф = ¬X∧Y∧¬Z ∨ X∧¬Y∧¬Z ∨ X∧¬Y∧Z ∨ X∧Y∧Z
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
XYZF
0000
0010
0101
0110
1001
1011
1100
1111
Fскнф = (X∨Y∨Z) ∧ (X∨Y∨¬Z) ∧ (X∨¬Y∨¬Z) ∧ (¬X∨¬Y∨Z)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
XYZFж
0000
0010
0101
0110
1001
1011
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧X ⊕ C010∧Y ⊕ C001∧Z ⊕ C110∧X∧Y ⊕ C101∧X∧Z ⊕ C011∧Y∧Z ⊕ C111∧X∧Y∧Z

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 1 => С100 = 0 ⊕ 1 = 1
Fж(010) = С000 ⊕ С010 = 1 => С010 = 0 ⊕ 1 = 1
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 1 => С101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 = 0

Таким образом, полином Жегалкина будет равен:
Fж = X ⊕ Y ⊕ Y∧Z
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы