Таблица истинности для функции ((P∧Q)∧(P∧R))∧(Q∧R):


Промежуточные таблицы истинности:
P∧Q:
PQP∧Q
000
010
100
111

P∧R:
PRP∧R
000
010
100
111

(P∧Q)∧(P∧R):
PQRP∧QP∧R(P∧Q)∧(P∧R)
000000
001000
010000
011000
100000
101010
110100
111111

Q∧R:
QRQ∧R
000
010
100
111

((P∧Q)∧(P∧R))∧(Q∧R):
PQRP∧QP∧R(P∧Q)∧(P∧R)Q∧R((P∧Q)∧(P∧R))∧(Q∧R)
00000000
00100000
01000000
01100010
10000000
10101000
11010000
11111111

Общая таблица истинности:

PQRP∧QP∧R(P∧Q)∧(P∧R)Q∧R((P∧Q)∧(P∧R))∧(Q∧R)
00000000
00100000
01000000
01100010
10000000
10101000
11010000
11111111

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
PQRF
0000
0010
0100
0110
1000
1010
1100
1111
Fсднф = P∧Q∧R
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
PQRF
0000
0010
0100
0110
1000
1010
1100
1111
Fскнф = (P∨Q∨R) ∧ (P∨Q∨¬R) ∧ (P∨¬Q∨R) ∧ (P∨¬Q∨¬R) ∧ (¬P∨Q∨R) ∧ (¬P∨Q∨¬R) ∧ (¬P∨¬Q∨R)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
PQRFж
0000
0010
0100
0110
1000
1010
1100
1111

Построим полином Жегалкина:
Fж = C000 ⊕ C100∧P ⊕ C010∧Q ⊕ C001∧R ⊕ C110∧P∧Q ⊕ C101∧P∧R ⊕ C011∧Q∧R ⊕ C111∧P∧Q∧R

Так как Fж(000) = 0, то С000 = 0.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(100) = С000 ⊕ С100 = 0 => С100 = 0 ⊕ 0 = 0
Fж(010) = С000 ⊕ С010 = 0 => С010 = 0 ⊕ 0 = 0
Fж(001) = С000 ⊕ С001 = 0 => С001 = 0 ⊕ 0 = 0
Fж(110) = С000 ⊕ С100 ⊕ С010 ⊕ С110 = 0 => С110 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(101) = С000 ⊕ С100 ⊕ С001 ⊕ С101 = 0 => С101 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(011) = С000 ⊕ С010 ⊕ С001 ⊕ С011 = 0 => С011 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
Fж(111) = С000 ⊕ С100 ⊕ С010 ⊕ С001 ⊕ С110 ⊕ С101 ⊕ С011 ⊕ С111 = 1 => С111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1

Таким образом, полином Жегалкина будет равен:
Fж = P∧Q∧R
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы