Таблица истинности для функции ((A≡B)∨¬(C≡D))∧(B→¬C):


Промежуточные таблицы истинности:
A≡B:
ABA≡B
001
010
100
111

C≡D:
CDC≡D
001
010
100
111

¬(C≡D):
CDC≡D¬(C≡D)
0010
0101
1001
1110

(A≡B)∨(¬(C≡D)):
ABCDA≡BC≡D¬(C≡D)(A≡B)∨(¬(C≡D))
00001101
00011011
00101011
00111101
01000100
01010011
01100011
01110100
10000100
10010011
10100011
10110100
11001101
11011011
11101011
11111101

¬C:
C¬C
01
10

B→(¬C):
BC¬CB→(¬C)
0011
0101
1011
1100

((A≡B)∨(¬(C≡D)))∧(B→(¬C)):
ABCDA≡BC≡D¬(C≡D)(A≡B)∨(¬(C≡D))¬CB→(¬C)((A≡B)∨(¬(C≡D)))∧(B→(¬C))
00001101111
00011011111
00101011011
00111101011
01000100110
01010011111
01100011000
01110100000
10000100110
10010011111
10100011011
10110100010
11001101111
11011011111
11101011000
11111101000

Общая таблица истинности:

ABCDA≡BC≡D¬(C≡D)(A≡B)∨(¬(C≡D))¬CB→(¬C)((A≡B)∨¬(C≡D))∧(B→¬C)
00001101111
00011011111
00101011011
00111101011
01000100110
01010011111
01100011000
01110100000
10000100110
10010011111
10100011011
10110100010
11001101111
11011011111
11101011000
11111101000

Логическая схема:

Совершенная дизъюнктивная нормальная форма (СДНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00111
01000
01011
01100
01110
10000
10011
10101
10110
11001
11011
11100
11110
Fсднф = ¬A∧¬B∧¬C∧¬D ∨ ¬A∧¬B∧¬C∧D ∨ ¬A∧¬B∧C∧¬D ∨ ¬A∧¬B∧C∧D ∨ ¬A∧B∧¬C∧D ∨ A∧¬B∧¬C∧D ∨ A∧¬B∧C∧¬D ∨ A∧B∧¬C∧¬D ∨ A∧B∧¬C∧D
Логическая cхема:

Совершенная конъюнктивная нормальная форма (СКНФ):

По таблице истинности:
ABCDF
00001
00011
00101
00111
01000
01011
01100
01110
10000
10011
10101
10110
11001
11011
11100
11110
Fскнф = (A∨¬B∨C∨D) ∧ (A∨¬B∨¬C∨D) ∧ (A∨¬B∨¬C∨¬D) ∧ (¬A∨B∨C∨D) ∧ (¬A∨B∨¬C∨¬D) ∧ (¬A∨¬B∨¬C∨D) ∧ (¬A∨¬B∨¬C∨¬D)
Логическая cхема:

Построение полинома Жегалкина:

По таблице истинности функции
ABCDFж
00001
00011
00101
00111
01000
01011
01100
01110
10000
10011
10101
10110
11001
11011
11100
11110

Построим полином Жегалкина:
Fж = C0000 ⊕ C1000∧A ⊕ C0100∧B ⊕ C0010∧C ⊕ C0001∧D ⊕ C1100∧A∧B ⊕ C1010∧A∧C ⊕ C1001∧A∧D ⊕ C0110∧B∧C ⊕ C0101∧B∧D ⊕ C0011∧C∧D ⊕ C1110∧A∧B∧C ⊕ C1101∧A∧B∧D ⊕ C1011∧A∧C∧D ⊕ C0111∧B∧C∧D ⊕ C1111∧A∧B∧C∧D

Так как Fж(0000) = 1, то С0000 = 1.

Далее подставляем все остальные наборы в порядке возрастания числа единиц, подставляя вновь полученные значения в следующие формулы:
Fж(1000) = С0000 ⊕ С1000 = 0 => С1000 = 1 ⊕ 0 = 1
Fж(0100) = С0000 ⊕ С0100 = 0 => С0100 = 1 ⊕ 0 = 1
Fж(0010) = С0000 ⊕ С0010 = 1 => С0010 = 1 ⊕ 1 = 0
Fж(0001) = С0000 ⊕ С0001 = 1 => С0001 = 1 ⊕ 1 = 0
Fж(1100) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С1100 = 1 => С1100 = 1 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(1010) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С1010 = 1 => С1010 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(1001) = С0000 ⊕ С1000 ⊕ С0001 ⊕ С1001 = 1 => С1001 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(0110) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0110 = 0 => С0110 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0101) = С0000 ⊕ С0100 ⊕ С0001 ⊕ С0101 = 1 => С0101 = 1 ⊕ 1 ⊕ 0 ⊕ 1 = 1
Fж(0011) = С0000 ⊕ С0010 ⊕ С0001 ⊕ С0011 = 1 => С0011 = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0
Fж(1110) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С1100 ⊕ С1010 ⊕ С0110 ⊕ С1110 = 0 => С1110 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(1101) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0001 ⊕ С1100 ⊕ С1001 ⊕ С0101 ⊕ С1101 = 1 => С1101 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 = 0
Fж(1011) = С0000 ⊕ С1000 ⊕ С0010 ⊕ С0001 ⊕ С1010 ⊕ С1001 ⊕ С0011 ⊕ С1011 = 0 => С1011 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0
Fж(0111) = С0000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С0111 = 0 => С0111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 = 1
Fж(1111) = С0000 ⊕ С1000 ⊕ С0100 ⊕ С0010 ⊕ С0001 ⊕ С1100 ⊕ С1010 ⊕ С1001 ⊕ С0110 ⊕ С0101 ⊕ С0011 ⊕ С1110 ⊕ С1101 ⊕ С1011 ⊕ С0111 ⊕ С1111 = 0 => С1111 = 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1

Таким образом, полином Жегалкина будет равен:
Fж = 1 ⊕ A ⊕ B ⊕ A∧C ⊕ A∧D ⊕ B∧D ⊕ B∧C∧D ⊕ A∧B∧C∧D
Логическая схема, соответствующая полиному Жегалкина:

Околостуденческое

Рейтинг@Mail.ru

© 2009-2021, Список Литературы